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LECTURE 1
BASICS OF PROBABILITY

1 Uncertainty or why we need probability and statistics

Many important economic models are concerned with decision making under uncertainty. For
example:

• The investor’s decision to buy or sell stocks involves the uncertainty about their future
prices.

• Airlines’ decision whether or not to open a new route involves the uncertainty about the
number passengers, the cost of fuel and aircraft maintenance.

• The investor’s decision to start production of a new product involves the uncertainty
about the product’s market price and the cost of inputs.

• A bidder’s bid in a first-price sealed-bid auction involves the uncertainty about other
bidders’ valuations, and often even his own valuation.

• The central bank’s decision to lower or raise the interest rate involves the uncertainty
about future inflation and unemployment.

We say that an experiment is deterministic if its outcome is unique or uniquely determined by
the conditions of the experiment. An experiment is indeterministic or random if its outcome
cannot be uniquely determined even if the experiment repeated under the same conditions.
There are several sources of uncertainty or randomness. It can arise due to incomplete
information. Consider flipping a coin experiment. Without knowing the position, velocity
and rotation of a coin it would be impossible to predict the outcome of the experiment with
certainty even for someone with a very advanced knowledge of physics. Another source of
uncertainty is complexity of the relationships between variables and/or states. Even
with the knowledge of the initial conditions such as position, velocity, and etc, a typical
person does not know enough physics to predict the outcome of flipping a coin experiment
with certainty.

If the sources of uncertainty were limited only to the two described above, at least theoret-
ically randomness could be eliminated by providing a complete description of an experiment.
For example, it was demonstrated that coin flipping can be accurately modeled using the
laws of mechanics and is highly predictable under controlled initial conditions. Nevertheless,
scientists in different disciplines convinced that there are fundamentally indeterministic
phenomena such that their randomness cannot be resolved by supplying more information.
One prominent example is quantum indeterminacy in physics. In neurosciences, it was found
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that neurons (cells that are responsible for processing and transmission of information) dis-
charge irregularly adding a noise to the information processed by the brain. Thus human
decision making is affected by the noise and, as a result, random to some extent.

Instead of trying to find a certain (deterministic) prediction for an experiment, a probability
model provides its probabilistic description by characterizing the likeliness or probabilities
(or probability distribution) of potential outcomes. The properties of probability models are
governed by strict mathematical laws; those laws are the subject of Probability Theory.

The knowledge of probability distributions and the laws of probability are crucial for
making optimal decisions in the face of uncertainty. However, the probability distribution of
any random variable is typically unknown and has to be evaluated (or estimated) empirically
using data. Estimation of probability distributions from is the subject of Statistics.

The basic components of a probability model are sample spaces, events, and probability
functions. They are discussed below.

2 Sample spaces and set theory

Definition 1. Sample space is a set (collection or list) of all possible outcomes for a random
experiment.

The sample space is often denoted by Ω, and its elements or outcomes are often denoted
by ω. In any random experiment, one and only one ω ∈ Ω is selected. For example:

• In the coin flipping experiment: Ω = {H,T}, where H stands for heads and T stands
for tails.

• Flipping a coin twice: Ω = {HH,TT,HT, TH}.

• Rolling a dice: Ω = {1, 2, 3, 4, 5, 6}.

• Predicting tomorrow’s weather: Ω = {rain, snow, clear}.

• Temperature measurement in ◦C: Ω = [−273.15,∞).

• AAPL price tomorrow: Ω = R+.

• Throwing a dart at a 1 meter × 1 meter board: Ω = [0, 1] × [0, 1]. In this example,
ω = (ω1, ω2), where ω1 are the horizontal and vertical coordinates respectively.

Definition 2. (a) A is a subset of Ω, denoted as A ⊂ Ω, if ω ∈ A implies that ω ∈ Ω.
(b) An event is any subset of the sample space.
We say that an event A occurred if the outcome of the random experiment is some ω ∈ A.

If the outcome of the random experiment is some ω /∈ A, we say that the event A did not
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occur. Since Ω ⊂ Ω, the sample space is also a (trivial) event: its meaning is that something
happened. For example:

• In the coin flipping experiment, we can define the following events A1 = {H} (heads),
A2 = {T} (tails), A3 = {H,T} (heads or tails), A4 = ∅ (an empty set containing no
elements: the coin hangs in the air).

• Flipping a coin twice: A1 = {HH} (observing two heads), A2 = {TT} (observing two
tails), A3 = {HH,TT} (observing the same side in two tosses), etc. Note that A4 = {H}
is not a valid event in this case, since {H} is not a subset of Ω = {HH,TT,HT, TH}.

• Rolling a dice: A1 = {1, 2, 3} (a number less than four rolled), A2 = {1, 3, 5} (an odd
number is rolled), A3 = {6} (six is rolled), and etc.

• Tomorrow’s weather: A1 = {rain, snow} (not a clear weather), A2 = {rain, clear} (no
snow), and etc.

• AAPL price tomorrow: A1 = {97} (the price is exactly $97), A2 = [97,∞) (the price is
at least $97), A3 = [97, 99] (the price is between $97 and $99).

The basic operations on sets are defined below.

Definition 3. (a) Union (A or B): A ∪B = {ω ∈ Ω : ω ∈ A or ω ∈ B}.
(b) Intersection (A and B): A ∩B = {ω ∈ Ω : ω ∈ A and ω ∈ B}.
(c) Complement (not A): Ac = {ω ∈ Ω : ω /∈ A}.

The union of A and B is an event, which occurs when A or B have occurred. In the
experiment with two flips of a coin, if A1 = {HH} and A2 = {TT}, then A3 = A1 ∪ A2 =

{HH,TT}. The intersection of A and B is an event, which occurs when both A and B have
occurred. In the AAPL example, if B1 = [0, 101) and B2 = [98,∞), then B1 ∩B2 = [98, 101).
The complement of A is an event that occurs if A does not occur. In the AAPL example, if
A = [95, 101), then Ac = [0, 95) ∪ [101,∞). Note that Ωc = ∅.

When two events cannot occur simultaneously, we say that they are mutually exclusive.

Definition 4. Events A and B are said to be mutually exclusive if A ∩B = ∅.

If A and B are mutually exclusive and we know that A occurred, we can conclude that B
did not occur.

Some properties of operations on sets are stated in the following theorem.

Theorem 5. (a) Commutative: A ∪B = B ∪A and A ∩B = B ∩A.
(b) Associative: (A ∪B) ∪ C = A ∪ (B ∪ C) and (A ∩B) ∩ C = A ∩ (B ∩ C).
(c) Distributive: (A ∪B) ∩C = (A ∩C) ∪ (B ∩C) and (A ∩B) ∪C = (A ∪C) ∩ (B ∪C).
(d) If A ⊂ B then A ∪B = B and A ∩B = A.
(e) De Morgan’s laws: (A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc.
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Proof. We will prove here only some parts of the theorem. Note that two sets S1 and S2 are
equal if and only if every element of S1 is also an element of S2 (S1 ⊂ S2) and vice versa
(S2 ⊂ S1).

To prove the first result in part (d), note that by the definition of the union operation,
B ⊂ (A ∪ B). Thus, it suffices to show that (A ∪ B) ⊂ B. The last statement can be easily
shown by contradiction. Suppose not: i.e. there is ω ∈ (A∪B) such that ω /∈ B. Since (A∪B)

consists of the elements of A and B, it must be true that ω ∈ A. Thus, there is ω such that
ω ∈ A and ω /∈ B. Hence, A 6⊂ B, which is a contradiction to the assumption made in part
(d). We conclude that there is no ω such that ω ∈ (A ∪ B) and ω /∈ B, and consequently
(A ∪B) ⊂ B.

To prove the second statement in part (c), suppose that ω ∈ ((A ∩ B) ∪ C). By the
definition of the union, ω ∈ (A ∩ B) or ω ∈ C. If ω ∈ C then ω ∈ (A ∪ C) and ω ∈ (B ∪ C),
and therefore ω ∈ (A∪C)∩ (B∪C). On the other hand, if ω ∈ (A∩B) then, by the definition
of the intersection, ω ∈ A and ω ∈ B. We obtain again that ω ∈ (A∪C) and ω ∈ (B∪C), and
therefore ω ∈ (A∪C)∩ (B ∪C). Hence, ((A∩B)∪C) ⊂ ((A∪C)∩ (B ∪C)). Now, suppose
there is ω ∈ ((A∪C)∩(B∪C)) that is not an element of (A∩B)∪C. From the definition of the
union and ω /∈ ((A∩B)∪C), it follows that ω /∈ C. Next, ω /∈ C and ω ∈ ((A∪C)∩ (B ∪C))

together imply that ω ∈ (A ∩ B). On the other hand, ω /∈ ((A ∩ B) ∪ C) also implies that
ω /∈ (A ∩B). We arrived at a contradiction.

To prove the second statement in part (e), suppose that ω ∈ (A ∩ B)c and therefore
ω /∈ (A ∩ B). By the definition of the intersection, we have that either ω /∈ A or ω /∈ B (or
both). In the first case, ω ∈ Ac. In the second case, ω ∈ Bc. In either case, ω ∈ (Ac ∪ Bc).
Hence, (A ∩ B)c ⊂ (Ac ∪ Bc). Now, suppose there is ω ∈ (Ac ∪ Bc) such that ω /∈ (A ∩ B)c.
Then, ω ∈ (A ∩B) and, therefore, ω ∈ A and ω ∈ B. Consequently, ω /∈ Ac and ω /∈ Bc, and
therefore, ω 6∈ (Ac ∪Bc), which is a contradiction.

The union and intersection operations can be extended to more than two sets:

A1 ∪A2 ∪ . . . ∪An = ∪ni=1Ai,

A1 ∩A2 ∩ . . . ∩An = ∩ni=1Ai.

Moreover, if {Ai : i = 1, 2, . . .} is a countably infinite sequence of sets,

A1 ∪A2 ∪ . . . = ∪∞i=1Ai,

A1 ∩A2 ∩ . . . = ∩∞i=1Ai.

In the first case, ω ∈ ∪∞i=1Ai if ω ∈ Ai for some i ∈ {1, 2, . . .}. In the second case, ω ∈ ∩∞i=1Ai

if ω ∈ Ai for all i = 1, 2, . . ..
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3 Probability function

Probability measures the likeliness of the occurrence of an event1 on the scale [0, 1], where
zero means that the event never occurs, and one means that the event always occurs. There
are two main approaches to interpreting probabilities: frequentist (objective) and subjective.
According to the frequentist approach, the probability of an event is the relative frequency
of occurrence of the event when the experiment is repeated a “large” number of times. The
problem with this definition is that it does not state how many times exactly the experiment
must be repeated. Also, there are experiments that cannot be repeated, which would prevent
us from applying the definition. According to the subjective approach, the probability of an
event is ascribed by one’s knowledge and/or beliefs. For example, when one argues that the
probability of seeing heads in a coin flipping experiment is 1/2, the statement is based on his
beliefs and knowledge rather than on actual measurements.

Regardless of the interpretation, the mathematical definition of probability is the same.

Definition 6. Given a collection of events defined on the sample space Ω, probability P is a
function, which assigns a number to every event in the collection according to the following
rules (axioms of probability):

A1. P (A) ≥ 0 for every event A.
A2. P (Ω) = 1.
A3. Let {Ai : i = 1, 2, . . .} be a countable collection of mutually exclusive events, i.e.

Ai ∩Aj = ∅ for all i 6= j. Then P (∪∞i=1Ai) =
∑∞

i=1 P (Ai).2

Remark. Here we are trying to avoid some technical details that are beyond the scope of
this course and intentionally vague about the collection of events. When the sample space is
discrete as in the coin flipping, dice rolling and weather examples, this collection can be taken
as the collection of all possible subsets of the sample space, i.e. it will contain every possible
event on Ω. However, when the sample space is continuous (uncountable) as in the AAPL,
temperature, and dart throwing examples, one cannot assign probabilities to every possible
event without violating the axioms of probability. In such cases, the collection of events to
which probabilities are assigned has to be restricted. For example when Ω = [0, 1], we can
restrict our attention to the collection of all intervals contained in [0, 1] and their unions.

The intuition behind the axioms of probability is very natural. According to A1, the
measures of likeliness of an event must be positive. One represents certainty according to
Axiom A2, which acts as a normalization. Lastly according to A3, if events cannot occur
simultaneously, then the probability of at least one of them occurring is equal to the sum of
their individual probabilities. In other words, the probability of a composite event is equal

1Hence, probabilities are assigned to events and not outcomes.
2Here,

∑n
i=1 ai denotes the sum:

∑n
i=1 ai = a1 + a2 + . . .+ an.
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to the sum of the probabilities of its (mutually exclusive) components. For example, suppose
that Ω = {ω1, ω2, . . . , ωn}. Suppose further that P ({ωi}) = 1/n for all i = 1, . . . , n. For an
event A defined on Ω, let N(A) be the number of ω’s contained in A. Then, according to
axiom A3, P (A) = N(A)/n.

Some of the properties that follow from the axioms of probability as stated in the following
theorem.

Theorem 7. (a) P (Ac) = 1− P (A).
(b) P (∅) = 0.
(c) P (A) ≤ 1.
(d) P (B) = P (B ∩A) + P (B ∩Ac).
(e) P (A ∪B) = P (A) + P (B)− P (A ∩B).
(f) If A ⊂ B then P (A) ≤ P (B).
(g) Boole’s Inequality: P (∪ni=1Ai) ≤

∑n
i=1 P (Ai).

(h) Bonferroni’s Inequality: P (A ∩B) ≥ P (A) + P (B)− 1.
(i) P (A1∪A2∪A3) = P (A1) +P (A2) +P (A3)−P (A1∩A2)−P (A1∩A3)−P (A2∩A3) +

P (A1 ∩A2 ∩A3).

Proof. (a) Write Ω = A ∪ Ac. By definition, A ∩ Ac = ∅, and therefore by Axiom A3,
P (Ω) = P (A) + P (Ac). By Axiom A2, 1 = P (A) + P (Ac), and the result follows.

(b) Since ∅ = Ωc, P (∅) = 1− P (Ω) = 0 by Axiom A2.
(c) Omitted
(d) First, B = B∩Ω = B∩ (A∪Ac). By Theorem 5(c), B∩ (A∪Ac) = (B∩A)∪ (B∩Ac).

Since ω cannot be simultaneously in A and Ac, the events B ∩ A and B ∩ Ac are mutually
exclusive, and therefore by Axiom A3, P (B) = P (B ∩ A) + P (B ∩ Ac). Note that in this
exercise, {A,Ac} is a partition of the sample space, since A ∪ Ac = Ω and the parts are
mutually exclusive.

(e) We will show first that A ∪B = A ∪ (B ∩Ac):

A ∪ (B ∩Ac) = (A ∪B) ∩ (A ∪Ac)

= (A ∪B) ∩ Ω

= A ∪B,

where the first equality follows by Theorem 5(a) and (c), the second equality follows by the
definition of the complement, and the last equality follows by 5(d). Next, note that A and
B ∩Ac are mutually exclusive. Hence, P (A∪B) = P (A) +P (B ∩Ac). From part (d) we have
P (B ∩Ac) = P (B)− P (B ∩A), and the result follows.

(f) Omitted.
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(g) Note that if the events are mutually exclusive, the result holds as an equality by Axiom
A3. In general case of non-mutually exclusive events, the proof is by induction. Suppose that
n = 2. Then,

P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2)

≤ P (A1) + P (A2),

where the inequality in the second line holds because P (A1 ∩ A2) ≥ 0 by Axiom A1. Next,
suppose n = 3. Then, by the associative property (Theorem 5(b)),

P (A1 ∪A2 ∪A3) = P ((A1 ∪A2) ∪A3)

≤ P (A1 ∪A2) + P (A3)

≤ P (A1) + P (A2) + P (A3),

where the inequalities in the second and third lines hold by the result for n = 2. Now, suppose
that the result holds for (n− 1):

P (∪n−1i=1 Ai) ≤
n−1∑
i=1

P (Ai). (1)

We need to show that it continues to hold for n. Using the same approach as in the case of
n = 3,

P (∪ni=1Ai) = P ((∪n−1i=1 Ai) ∪An)

≤ P (∪n−1i=1 Ai) + P (An)

≤
n−1∑
i=1

P (Ai) + P (An)

=
n∑

i=1

P (Ai),

where the inequality in the second line holds by the result for n = 2, and the inequality in the
third line holds by (1).

(h) Omitted.
(i) Omitted.

Example. Suppose that in a typical year in city V, it rains on 70% of the days, snows on
20% of the days, and rains and snows on 10% of the days. If you pick a day at random,
what is the probability that it won’t rain or snow? Let R and S be the events denoting rain
and snow respectively. Then the event R ∪ S represents rain or snow. From Theorem 7(e)
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P (R ∪ S) = P (R) + P (S)− P (R ∩ S) = 0.70 + 0.20− 0.10 = 0.80. Hence, the probability of
no rain or snow on a randomly chosen day is 20%.

4 Counting techniques: permutations and combinations

When the sample space Ω has finitely many outcomes that are equally likely to be selected,
the probability of an event A can be easily determined by counting the number of elements in
A and dividing it by the total number of elements in Ω:

P (A) =
N(A)

N(Ω)
.

Example. Suppose that Ω = {ω1, ω2, . . . , ω10}, and each ω is equally likely to be selected
Let R = {ω1, ω2, . . . , ω7} and S = {ω7, ω8}. Then P (R) = 0.7, P (S) = 0.2, and P (R ∩ S) =

P ({ω7}) = 0.1. Lastly, P ((R ∪ S)c) = P ({ω9,ω10}) = 0.2.
In more complicated examples, the following techniques can be useful.

Definition 8. (Multiplication Principle) Suppose that procedure E1 has n1 possible out-
comes and procedure E2 has n2 possible outcomes. Then an experiment consisting of per-
forming E1 first and E2 next has n1 × n2 possible outcomes.

Example. Suppose we first flip a coin and then roll a dice. The number of possible outcomes
is 2× 6 = 12: Ω = {H1, H2, . . . ,H6, T1, T2, . . . , T6}.

By applying the multiplication principle repeatedly, we can extend this to experiments
with more than two procedures.

Example. Suppose we first flip a coin three times and then roll a dice twice. The number of
possible outcomes is 2× 2× 2× 6× 6 = 288.

Sometimes experiments involve selecting (without replacement) r objects from a set of n
objects and arranging them in a particular order.

Definition 9. An ordered arrangement of r distinct elements selected from a set of n distinct
elements, where n ≥ r, is called a permutation and denoted P (n, r).

Theorem 10. P (n, r) = n!/(n− r)!

Proof. For the first position, we can choose any of n elements. Since elements are not placed
back into the set (selection without replacement), for the second position we can choose from
n−1 remaining elements and etc. For the r-th position, we can choose from n−(r−1) = n−r+1
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elements. Hence,3

P (n, r) = n× (n− 1)× . . .× (n− r + 1) = n!/(n− r)!

Example. (Ice Hockey) (a) Suppose that a hockey team has 12 forwards, 6 defenceman,
and two goaltenders. There are 3 forward positions (L, C, R), two defense positions (L and
R), and one position in the goal net. In how many different ways a complete line of players
can be selected? Answer: Applying the result in Theorem 10 together with the multiplication
principle, we obtain: P (12, 3)× P (6, 2)× P (2, 1) = (12!/9!)× (6!/4!)× (2!/1!) = 79, 200.

(b) Higgins is a forward and Bieksa is a defenceman playing on the same team that has a
composition as described in (a). If the lineup for a shift is selected randomly (but following
the rules in (a)), what is the probability that Higgins and Bieksa will play in the same shift?
Answer: The number of ways to select the line of forwards with Higgins is given by P (11, 2)×
3 = 330. The number of ways to select defencemen with Bieksa is P (5, 1)× 2 = 10. Thus, the
total number of lineup permutations with Higgins and Bieksa on the ice at the same time is
330 × 10 × 2 = 6, 600. Hence, the probability that Higgins and Bieksa will play in the same
shift is 6600/79200 ≈ 0.083333.

(c) Continuing with the example in (a) and (b), what is the probability that Higgins
and Bieksa will both play L on the same shift? Answer: P (11, 2) × P (5, 1) × 2/79200 =

110× 5× 2/79200 ≈ 0.013889.

When the order in which elements are selected from a set is not important, we have
combinations.

Definition 11. A selection of r distinct elements from a set of n distinct elements, where
n ≥ r, is called a combination and denoted C(n, r).

Theorem 12.
C(n, r) =

n!

(n− r)!r!
≡
(
n

r

)
.

Proof. Note that once r elements have been selected into a combination, there will be exactly
P (r, r) = r! different ways to arrange the chosen elements into permutations, i.e. for every
combination of r elements there are r! permutations:

P (n, r) = C(n, r)× P (r, r) = C(n, r)× r!

3Recall that for a non-negative integer n its factorial is defined as n! = n× (n−1)× . . .×1. Also, we define
0! = 1.
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Example. Continuing with the ice hockey example, if we ignore L, C, and R positions for
forwards and L and R positions for defencemen, the number of ways to select a complete
lineup is C(12, 3) × C(6, 2) × C(2, 1) = 6, 600. The number of lineups that include Higgins
and Bieksa is given by C(11, 2)×C(5, 1)×C(2, 1) = 550. Hence, the probability that Higgins
and Bieksa will be in the same randomly selected shift is 550/6600 ≈ 0.083333, which is the
same anwer as in part (b) above.
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