
Lecture 7: Confidence intervals
Economics 326 — Econometrics II

Vadim Marmer, UBC

Point estimation
• Our model:

1. 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑈𝑖, 𝑖 = 1, … , 𝑛.
2. E [𝑈𝑖 ∣ X] = 0 for all 𝑖’s.
3. E [𝑈2

𝑖 ∣ X] = 𝜎2 for all 𝑖’s.
4. E [𝑈𝑖𝑈𝑗 ∣ X] = 0 for all 𝑖 ≠ 𝑗.

5. 𝑈 ’s are jointly normally distributed conditional on X.

• The OLS estimator ̂𝛽1 is a point estimator of 𝛽1.
• With probability one, we have that ̂𝛽1 ≠ 𝛽1.
• To construct interval estimators, we need to know the distribution of ̂𝛽1.

Normal distribution
• A normal rv is a continuous rv that can take on any value. The PDF of a normal rv 𝑋 is

𝑓(𝑥) = 1√
2𝜋𝜎2 exp (−(𝑥 − 𝜇)2

2𝜎2 ) , where

𝜇 = E [𝑋] and 𝜎2 = Var (𝑋) .
We usually write 𝑋 ∼ 𝑁(𝜇, 𝜎2).

• If 𝑋 ∼ 𝑁(𝜇, 𝜎2), then 𝑎 + 𝑏𝑋 ∼ 𝑁(𝑎 + 𝑏𝜇, 𝑏2𝜎2).

Standard normal distribution
• Standard normal rv has 𝜇 = 0 and 𝜎2 = 1. Its PDF is 𝜙(𝑧) = 1√

2𝜋 exp (− 𝑧2
2 ).

• Symmetric around zero (mean): if 𝑍 ∼ 𝑁(0, 1), 𝑃(𝑍 > 𝑧) = 𝑃(𝑍 < −𝑧).
• Thin tails: 𝑃(−1.96 ≤ 𝑍 ≤ 1.96) = 0.95.

• If 𝑋 ∼ 𝑁(𝜇, 𝜎2), then (𝑋 − 𝜇)/𝜎 ∼ 𝑁(0, 1).

Bivariate normal distribution
• 𝑋 and 𝑌 have a bivariate normal distribution if their joint PDF is given by:

𝑓(𝑥, 𝑦) = 1
2𝜋√(1 − 𝜌2)𝜎2

𝑋𝜎2
𝑌

exp [− 𝑄
2(1 − 𝜌2)] ,

where 𝑄 = (𝑥−𝜇𝑋)2

𝜎2
𝑋

+ (𝑦−𝜇𝑌 )2

𝜎2
𝑌

− 2𝜌 (𝑥−𝜇𝑋)(𝑦−𝜇𝑌 )
𝜎𝑋𝜎𝑌

,

𝜇𝑋 = E [𝑋] , 𝜇𝑌 = E [𝑌 ] , 𝜎2
𝑋 = Var (𝑋) , 𝜎2

𝑌 = Var (𝑌 ), and 𝜌 = Corr(𝑋, 𝑌 ).
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Properties of bivariate normal
If 𝑋 and 𝑌 have a bivariate normal distribution:

• 𝑎 + 𝑏𝑋 + 𝑐𝑌 ∼ 𝑁(𝜇∗, (𝜎∗)2), where

𝜇∗ = 𝑎 + 𝑏𝜇𝑋 + 𝑐𝜇𝑌 , (𝜎∗)2 = 𝑏2𝜎2
𝑋 + 𝑐2𝜎2

𝑌 + 2𝑏𝑐𝜌𝜎𝑋𝜎𝑌 .

• Cov (𝑋, 𝑌 ) = 0 ⟹ 𝑋 and 𝑌 are independent.

• Can be generalized to more than 2 variables (multivariate normal).

Normality of the OLS estimator
• Assume that 𝑈𝑖’s are jointly normally distributed conditional on X (Assumption 5).

• Then 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑈𝑖 are also jointly normally distributed conditional on X.

• Since ̂𝛽1 = ∑𝑛
𝑖=1 𝑤𝑖𝑌𝑖, where 𝑤𝑖 = 𝑋𝑖−𝑋̄

∑𝑛
𝑙=1(𝑋𝑙−𝑋̄)2 depend only on X, ̂𝛽1 is also normally distributed conditional

on X.

• Conditionally on X:
̂𝛽1 ∣ X ∼ 𝑁 (𝛽1, Var ( ̂𝛽1 ∣ X)) ,

Var ( ̂𝛽1 ∣ X) = 𝜎2

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 .

Interval estimation problem
• We want to construct an interval estimator for 𝛽1:

– The interval estimator is called a confidence interval (CI).

– A CI contains the true value 𝛽1 with some pre-specified probability 1 − 𝛼, where 𝛼 is a small
probability of error.

– For example, if 𝛼 = 0.05, then the random CI will contain 𝛽1 with probability 0.95.

• 1 − 𝛼 is called the coverage probability.

• Confidence interval: 𝐶𝐼1−𝛼 = [𝐿𝐵1−𝛼, 𝑈𝐵1−𝛼]. The lower bound (LB) and upper bound (UB) should depend
on the coverage probability 1 − 𝛼.

• The formal definition of CI: It is a random interval 𝐶𝐼1−𝛼 such that conditionally on X,

𝑃 (𝛽1 ∈ 𝐶𝐼1−𝛼 ∣ X) = 1 − 𝛼.
Note that the random element is 𝐶𝐼1−𝛼.

• Sometimes, a CI is defined as 𝑃 (𝛽1 ∈ 𝐶𝐼1−𝛼) ≥ 1 − 𝛼.

Symmetric CIs
• One approach to constructing CIs is to consider a symmetric interval around the estimator ̂𝛽1:

𝐶𝐼1−𝛼 = [ ̂𝛽1 − 𝑐1−𝛼, ̂𝛽1 + 𝑐1−𝛼]

• The problem is choosing 𝑐1−𝛼 such that 𝑃 (𝛽1 ∈ 𝐶𝐼1−𝛼 ∣ X) = 1 − 𝛼.
• In choosing 𝑐1−𝛼 we will be relying on the fact that given our assumptions and conditionally on X:

̂𝛽1 ∣ X ∼ 𝑁 (𝛽1, Var ( ̂𝛽1 ∣ X)) ,

Var ( ̂𝛽1 ∣ X) = 𝜎2

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 .
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• Note that conditionally on X:
̂𝛽1 − 𝛽1

√Var ( ̂𝛽1 ∣ X)
∼ 𝑁 (0, 1) .

Standard normal quantiles
• Let 𝑍 ∼ 𝑁 (0, 1) . The 𝜏 -th quantile (percentile) of the standard normal distribution is 𝑧𝜏 such that

𝑃 (𝑍 ≤ 𝑧𝜏) = 𝜏.

• Median: 𝜏 = 0.5 and 𝑧0.5 = 0. (𝑃 (𝑍 ≤ 0) = 0.5).

• If 𝜏 = 0.975 then 𝑧0.975 = 1.96. Due to symmetry, if 𝜏 = 0.025 then 𝑧0.025 = −1.96.

𝜎2 is known (infeasible CIs)
• Suppose (for a moment) that 𝜎2 is known, and we can compute exactly the variance of ̂𝛽1:

Var ( ̂𝛽1 ∣ X) = 𝜎2

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 .

• Consider the following CI:

𝐶𝐼1−𝛼 = [ ̂𝛽1 − 𝑧1−𝛼/2√Var ( ̂𝛽1 ∣ X),

̂𝛽1 + 𝑧1−𝛼/2√Var ( ̂𝛽1 ∣ X)].

• For example, if 1 − 𝛼 = 0.95 ⟺ 𝛼 = 0.05 ⟺ 𝑧1−𝛼/2 = 𝑧0.975 = 1.96, and

𝐶𝐼0.95 = [ ̂𝛽1 − 1.96√Var ( ̂𝛽1 ∣ X),

̂𝛽1 + 1.96√Var ( ̂𝛽1 ∣ X)].

Infeasible CI validity (𝜎2 known)
• We need to show that

𝑃 (𝛽1 ∈ 𝐶𝐼1−𝛼 ∣ X) = 1 − 𝛼.

• Next, let 𝜎 ̂𝛽1
= √Var ( ̂𝛽1 ∣ X). Then:

̂𝛽1 − 𝑧1−𝛼/2 𝜎 ̂𝛽1
≤ 𝛽1 ≤ ̂𝛽1 + 𝑧1−𝛼/2 𝜎 ̂𝛽1

⟺ −𝑧1−𝛼/2 𝜎 ̂𝛽1
≤ 𝛽1 − ̂𝛽1 ≤ 𝑧1−𝛼/2 𝜎 ̂𝛽1

⟺ −𝑧1−𝛼/2 𝜎 ̂𝛽1
≤ ̂𝛽1 − 𝛽1 ≤ 𝑧1−𝛼/2 𝜎 ̂𝛽1

⟺ −𝑧1−𝛼/2 ≤
̂𝛽1 − 𝛽1
𝜎 ̂𝛽1

≤ 𝑧1−𝛼/2

Infeasible CI validity (𝜎2 known)
• We have that

𝛽1 ∈ 𝐶𝐼1−𝛼

⟺ −𝑧1−𝛼/2 ≤
̂𝛽1 − 𝛽1

√Var ( ̂𝛽1 ∣ X)
≤ 𝑧1−𝛼/2.
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• Let 𝑍 = ̂𝛽1−𝛽1
√Var( ̂𝛽1∣X)

∼ 𝑁 (0, 1) conditionally on X.

𝑃 (−𝑧1−𝛼/2 ≤ 𝑍 ≤ 𝑧1−𝛼/2 ∣ X)
= 𝑃 (𝑧𝛼/2 ≤ 𝑍 ≤ 𝑧1−𝛼/2 ∣ X)
= 1 − 𝛼/2 − 𝛼/2 = 1 − 𝛼.

Feasible CIs (𝜎2 unknown)
• Since 𝜎2 is unknown, we must estimate it from the data:

𝑠2 = 1
𝑛 − 2

𝑛
∑
𝑖=1

̂𝑈2
𝑖 = 1

𝑛 − 2
𝑛

∑
𝑖=1

(𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋𝑖)
2

.

• We can replace 𝜎2 by 𝑠2; however, the result does not have a normal distribution anymore:

̂𝛽1 − 𝛽1

√V̂ar ( ̂𝛽1)
∼ 𝑡𝑛−2,

where V̂ar ( ̂𝛽1) = 𝑠2

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 .

Here 𝑡𝑛−2 denotes the 𝑡-distribution with 𝑛 − 2 degrees of freedom.

• The degrees of freedom depend on

– the sample size (𝑛),

– and the number of parameters one has to estimate to compute 𝑠2 (two in this case, 𝛽0 and 𝛽1).

Feasible CIs (𝜎2 unknown)
• Let 𝑡𝑑𝑓,𝜏 be the 𝜏 -th quantile of the 𝑡-distribution with the number of degrees of freedom 𝑑𝑓 : If 𝑇 ∼ 𝑡𝑑𝑓 then

𝑃 (𝑇 ≤ 𝑡𝑑𝑓,𝜏) = 𝜏.

• Similarly to the normal distribution, the 𝑡-distribution is centered at zero and is symmetric around zero:
𝑡𝑛−2,1−𝛼/2 = −𝑡𝑛−2,𝛼/2.

• We can now construct a feasible confidence interval with 1 − 𝛼 coverage as:

𝐶𝐼1−𝛼 = [ ̂𝛽1 − 𝑡𝑛−2,1−𝛼/2√V̂ar ( ̂𝛽1),

̂𝛽1 + 𝑡𝑛−2,1−𝛼/2√V̂ar ( ̂𝛽1)],

where V̂ar ( ̂𝛽1) = 𝑠2

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 .

Example: Data
• Data: rental from the wooldridge R package. 64 US cities in 1990.

– rent: average monthly rent ($)
– avginc: per capita income ($)

• Model: Rent𝑖 = 𝛽0 + 𝛽1AvgInc𝑖 + 𝑈𝑖.
library(wooldridge)
data("rental")
rental90 <- subset(rental, y90 == 1)
head(rental90[, c("city", "rent", "avginc")])
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city rent avginc
2 1 342 19568
4 2 496 31885
6 3 351 21202
8 4 588 29044
10 5 925 56307
12 6 630 35103

Example: OLS regression

reg <- lm(rent ~ avginc, data = rental90)
summary(reg)

Call:
lm(formula = rent ~ avginc, data = rental90)

Residuals:
Min 1Q Median 3Q Max

-94.67 -47.27 -13.68 25.65 228.46

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.488e+02 3.210e+01 4.635 1.89e-05 ***
avginc 1.158e-02 1.308e-03 8.851 1.34e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 66.56 on 62 degrees of freedom
Multiple R-squared: 0.5582, Adjusted R-squared: 0.5511
F-statistic: 78.34 on 1 and 62 DF, p-value: 1.341e-12

Example: Extracting key values

# Estimated slope and its standard error
beta1_hat <- coef(reg)["avginc"]
se_beta1 <- summary(reg)$coefficients["avginc", "Std. Error"]
cat("beta_1_hat =", round(beta1_hat, 4), "\n")

beta_1_hat = 0.0116
cat("SE(beta_1_hat) =", round(se_beta1, 4), "\n")

SE(beta_1_hat) = 0.0013
# Degrees of freedom: n - 2
n <- nrow(rental90)
df <- n - 2
cat("n =", n, ", df =", df, "\n")

n = 64 , df = 62

Example: 95% confidence interval

# Critical value
t_95 <- qt(0.975, df)
cat("t_{62, 0.975} =", round(t_95, 3), "\n")

t_{62, 0.975} = 1.999
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# 95% CI: beta_1_hat +/- t * SE
CI_95 <- c(beta1_hat - t_95 * se_beta1,

beta1_hat + t_95 * se_beta1)
round(CI_95, 4)

avginc avginc
0.0090 0.0142
# Check with confint()
confint(reg, "avginc", level = 0.95)

2.5 % 97.5 %
avginc 0.008964625 0.01419539

Example: 90% confidence interval

# Critical value
t_90 <- qt(0.95, df)
cat("t_{62, 0.95} =", round(t_90, 3), "\n")

t_{62, 0.95} = 1.67
# 90% CI: beta_1_hat +/- t * SE
CI_90 <- c(beta1_hat - t_90 * se_beta1,

beta1_hat + t_90 * se_beta1)
round(CI_90, 4)

avginc avginc
0.0094 0.0138
# Check with confint()
confint(reg, "avginc", level = 0.90)

5 % 95 %
avginc 0.009395296 0.01376472

The effect of estimating 𝜎2

• The 𝑡-distribution has heavier tails than the normal.

• 𝑡𝑑𝑓,1−𝛼/2 > 𝑧1−𝛼/2, but as 𝑑𝑓 increases 𝑡𝑑𝑓,1−𝛼/2 → 𝑧1−𝛼/2.
• When the sample size 𝑛 is large, 𝑡𝑛−2,1−𝛼/2 can be replaced with 𝑧1−𝛼/2.

Interpretation of confidence intervals
• The confidence interval 𝐶𝐼1−𝛼 is a function of the sample {(𝑌𝑖, 𝑋𝑖) ∶ 𝑖 = 1, … , 𝑛}, and therefore is random.

This allows us to talk about the probability of 𝐶𝐼1−𝛼 containing the true value of 𝛽1.
• Once the confidence interval is computed given the data, we have its one realization. The realization of

𝐶𝐼1−𝛼 (the computed confidence interval) is not random, and it does not make sense anymore to talk about
the probability that it includes the true 𝛽1.

• Once the confidence interval is computed, it either contains the true value 𝛽1 or it does not.
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