Lecture 7: Confidence intervals
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Point estimation
e Our model:
1. Y, =6,+5,X,+ U, i=1,..,n.
2. E[U; | X] =0 for all ¢’s.
3. E[U? | X] = o? for all i’s.
4. E[U,U; | X] =0 for all i # j.
5. U’s are jointly normally distributed conditional on X.
e The OLS estimator Bl is a point estimator of j;.
o With probability one, we have that Bl * b

o To construct interval estimators, we need to know the distribution of 51-

Normal distribution
e A normal rv is a continuous rv that can take on any value. The PDF of a normal rv X is
flz) = ﬁexp (—W) , where
p=E[X] and 02 = Var (X).
We usually write X ~ N (u,0?).
o If X ~ N(i,0?), then a +bX ~ N(a+ bu,b*c?).

Standard normal distribution
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o Standard normal v has g = 0 and o2 = 1. Its PDF is ¢(2) = \/% exp (—%)
o Symmetric around zero (mean): if Z ~ N(0,1), P(Z > z) = P(Z < —z).
o Thin tails: P(—1.96 < Z < 1.96) = 0.95.

o If X ~ N(u,0?), then (X — u)/o ~ N(0,1).

Bivariate normal distribution

e X and Y have a bivariate normal distribution if their joint PDF is given by:

flay) = ! x| gy
7 2my/(1 — p?)o%o% 21—p%)]"

where ) = (@opx)® 4 ony)® 2p E=px)y—ny)
% o
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px = E[X],uy =E[Y],0% = Var (X),0% = Var (Y), and p = Corr(X,Y).



Properties of bivariate normal
If X and Y have a bivariate normal distribution:

e a+bX +cY ~ N(p*, (0*)?), where

w=a+buy +cuy, (0%)2=0b%0%+ 20l + 2bcpo oy

e Cov(X,Y)=0= X and Y are independent.

o Can be generalized to more than 2 variables (multivariate normal).

Normality of the OLS estimator
o Assume that U;’s are jointly normally distributed conditional on X (Assumption 5).

o Then Y; = B, + 5, X; + U, are also jointly normally distributed conditional on X.

e Since Bl = Z?:l w,Y;, where w; = ﬁ depend only on X, ﬁAl is also normally distributed conditional
=1\
on X.

e Conditionally on X:
Bl | X ~N (ﬁl,Var (51 | X)) )
o2

Z?ﬂ (Xi - X)z

Var (Bl | X) =

Interval estimation problem
o We want to construct an interval estimator for f;:
— The interval estimator is called a confidence interval (CI).

— A CI contains the true value 5; with some pre-specified probability 1 — «, where « is a small
probability of error.

— For example, if o = 0.05, then the random CI will contain 8, with probability 0.95.
e 1 — « is called the coverage probability.

 Confidence interval: CI,_, = [LB,_,,UB;_,]. The lower bound (LB) and upper bound (UB) should depend
on the coverage probability 1 — a.

o The formal definition of CI: It is a random interval CI,_, such that conditionally on X,
P(B,eCl_,|X)=1—cq.
Note that the random element is CI;_,,.

o Sometimes, a CI is defined as P (5, € CI,_,) > 1—a.

Symmetric Cls

e One approach to constructing Cls is to consider a symmetric interval around the estimator 51:
Cl_o = [ﬂl —Croas 1+ Cl—a]

o The problem is choosing ¢;_,, such that P(8; € CI,_, | X)=1—a.
e In choosing ¢;_, we will be relying on the fact that given our assumptions and conditionally on X:
Bl | X~N (Blavar (/él | X)) )
2
o

27:1 (Xi - X)Q‘
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Var (Bl | X) =



e Note that conditionally on X:

Br— B

——~N(0,1).
Var (ﬂl | X)

Standard normal quantiles
o Let Z~ N (0,1). The 7-th quantile (percentile) of the standard normal distribution is z. such that
P(Z<z)=T.

e Median: 7=0.5 and z;,; = 0. (P (Z <0) =0.5).
o If 7=0.975 then 2 g75 = 1.96. Due to symmetry, if 7 = 0.025 then 2z go5 = —1.96.

0? is known (infeasible CIs)
« Suppose (for a moment) that o2 is known, and we can compute exactly the variance of 31:

0.2

Var (51 | X) =

—. 2"

ZZL:l (Xz - X)

o Consider the following CI:

Clio = |y = #1ap2 VVar (5; X)),
By + Zl—a/2\/\m]‘

o For example, if 1 —a = 0.95 <= a = 0.0 <= 2;_, /5 = z(.975 = 1.96, and

Clygs = [31 — 1.964/ Var (Bl | X)7
By +1.961/Var (B, | X)]

Infeasible CI validity (0? known)
o We need to show that
P ecCl, , |X)=1-a.

* Next, let 05 = /Var (ﬁl | X). Then:

Br—21ap205 <P <Bi+ 210205
S =21 ap05 <P — 01 <2 ap0p,
S =21 005 <SPPI S 2 405

b — B
95

= 2 S < 2a

1

Infeasible CI validity (0? known)
o We have that

61 € 0117(1

B =B

= a2 S T = S 212
Var (3, | X)



o Let Z = L?l ~ N (0,1) conditionally on X.
Var(,B1|X)

P <_Zlfoz/2 SZ< 2 ap | X)
=P (202 <2< 2 0p | X)
=l—a/2—a/2=1-a.

Feasible CIs (0? unknown)

« Since ¢? is unknown, we must estimate it from the data:
1 no. 1 n ~ ~ 2
2 _ } : 2 _ E : _ B3 _
s _n—2i:1 i_n—2i:1(yé Bo BlXi)

« We can replace o2 by s2; however, the result does not have a normal distribution anymore:

by
Var (5,)
here Var (3 s*

Here t,,_, denotes the t-distribution with n — 2 degrees of freedom.
e The degrees of freedom depend on
— the sample size (n),

— and the number of parameters one has to estimate to compute s? (two in this case, 3, and f3;).

Feasible CIs (0? unknown)

o Let t;;, be the 7-th quantile of the ¢-distribution with the number of degrees of freedom df: If T' ~ ¢, then

e Similarly to the normal distribution, the ¢-distribution is centered at zero and is symmetric around zero:
ln2,1-a/2 = “tn2a/2-

e We can now construct a feasible confidence interval with 1 — « coverage as:

Cl_ o= {Bl - tn72,17a/2\/vma
By + tn72,17a/2\/m:|,

where Var (BJ =

Example: Data

o Data: rental from the wooldridge R package. 64 US cities in 1990.
— rent: average monthly rent ($)
— avginc: per capita income ($)

o Model: Rent; = 3, + B, Avglnc; + U;.

library(wooldridge)

data("rental")

rental90 <- subset(rental, y90 == 1)
head(rental90[, c("city", "rent", "avginc")])



city rent avginc

2 1 342 19568
4 2 496 31885
6 3 351 21202
8 4 588 29044
10 5 925 56307
12 6 630 35103

Example: OLS regression

reg <- lm(rent ~ avginc, data = rental90)
summary (reg)

Call:
Im(formula = rent ~ avginc, data = rental90)

Residuals:
Min 1Q Median 3Q Max
-94.67 -47.27 -13.68 25.65 228.46

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 1.488e+02 3.210e+01 4.635 1.89e-05 *x*x*
avginc 1.158e-02 1.308e-03  8.851 1.34e-12 **x*

Signif. codes: O '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 66.56 on 62 degrees of freedom
Multiple R-squared: 0.5582, Adjusted R-squared: 0.5511
F-statistic: 78.34 on 1 and 62 DF, p-value: 1.341e-12

Example: Extracting key values

# Estimated slope and its standard error

betal_hat <- coef(reg) ["avginc"]

se_betal <- summary(reg)$coefficients["avginc", "Std. Error"]
cat("beta_1_hat =", round(betal_hat, 4), "\n")

beta_1_hat = 0.0116
cat("SE(beta_1_hat) =", round(se_betal, 4), "\n")

SE(beta_1_hat) = 0.0013

# Degrees of freedom: n - 2

n <- nrow(rental90)

df <-n - 2

Cat(lln =n’ n, ||, df :n, df, n\nn)

n==64, df = 62

Example: 95% confidence interval

# Critical value

t_95 <- qt(0.975, df)

cat("t_{62, 0.975} =", round(t_95, 3), "\n")

t_{62, 0.975} = 1.999



# 957 CI: beta_1 hat +/- t * SE

CI_95 <- c(betal_hat - t_95 * se_betal,
betal_hat + t_95 * se_betal)

round (CI_95, 4)

avginc avginc
0.0090 0.0142

# Check with confint()
confint(reg, "avginc", level = 0.95)

2.5 % 97.5 %
avginc 0.008964625 0.01419539

Example: 90% confidence interval

# Critical value

t_90 <- qt(0.95, df)

cat("t_{62, 0.95} =", round(t_90, 3), "\n")
t_{62, 0.95} = 1.67

# 90% CI: beta_1 hat +/- t * SE

CI_90 <- c(betal_hat - t_90 * se_betal,
betal_hat + t_90 * se_betal)

round (CI_90, 4)

avginc avginc
0.0094 0.0138

# Check with confint()
confint(reg, "avginc", level = 0.90)

5% 95 %
avginc 0.009395296 0.01376472
The effect of estimating o2
e The t-distribution has heavier tails than the normal.
* tafi-a/2 > Z1-a/2, DUt as df increases t 1 o0 = 21_q)2-

» When the sample size n is large, ¢, 5o/, can be replaced with z;_ ;.

Interpretation of confidence intervals

o The confidence interval CI,_, is a function of the sample {(Y;,X;) : i =1,...,n}, and therefore is random.
This allows us to talk about the probability of CI,_, containing the true value of 3.

e Once the confidence interval is computed given the data, we have its one realization. The realization of
CI,_, (the computed confidence interval) is not random, and it does not make sense anymore to talk about
the probability that it includes the true f;.

e Once the confidence interval is computed, it either contains the true value 3; or it does not.
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