Economics 326 — Introduction to Econometrics II
From \begin{align*} \hat{U}_{i} &= \left( Y_{i}-\bar{Y}\right) -\hat{\beta}\left( X_{i}-\bar{X}\right), \\ Y_{i}-\bar{Y} &= \beta \left( X_{i}-\bar{X}\right) +U_{i}-\bar{U}, \end{align*} we get \hat{U}_{i}=\left( U_{i}-\bar{U}\right) -\left( \hat{\beta}-\beta \right)\left( X_{i}-\bar{X}\right).
\hat{U}_{i}^{2}=\left( U_{i}-\bar{U}\right) ^{2}+\left( \hat{\beta}-\beta \right)^{2}\left( X_{i}-\bar{X}\right)^{2}-2\left( \hat{\beta}-\beta \right) \left( X_{i}-\bar{X}\right) \left( U_{i}-\bar{U}\right). Thus, \sum_{i=1}^{n}\hat{U}_{i}^{2} =\sum_{i=1}^{n}\left( U_{i}-\bar{U}\right) ^{2}+\left( \hat{\beta}-\beta \right) ^{2}\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}-2\left( \hat{\beta}-\beta \right) \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) \left( U_{i}-\bar{U}\right).
To show E\sum_{i=1}^{n}\hat{U}_{i}^{2}=\left( n-2\right) \sigma ^{2}, we verify the three expectations below.
\begin{align*} \sum_{i=1}^{n}\left( U_{i}-\bar{U}\right) ^{2} &= \sum_{i=1}^{n}U_{i}^{2}-\frac{1}{n}\left( \sum_{i=1}^{n}U_{i}\right) ^{2} \\ &= \sum_{i=1}^{n}U_{i}^{2}-\frac{1}{n}\left( \sum_{i=1}^{n}U_{i}^{2}+\sum_{i=1}^{n}\sum_{j\neq i}U_{i}U_{j}\right). \end{align*} Taking expectations and using the assumptions, E\sum_{i=1}^{n}\left( U_{i}-\bar{U}\right) ^{2}=n\sigma ^{2}-\frac{1}{n}n\sigma ^{2}=\left( n-1\right) \sigma ^{2}.
Because E\hat{\beta}=\beta (conditionally on X), E\left( \hat{\beta}-\beta \right) ^{2}=Var\left( \hat{\beta}\right)=\frac{\sigma ^{2}}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}. Hence, E\left( \hat{\beta}-\beta \right) ^{2}\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}=\sigma^{2}.
Note that \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) \left( U_{i}-\bar{U}\right) =\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) U_{i}, and \hat{\beta}-\beta =\frac{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) U_{i}}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}. Therefore, \begin{align*} \left( \hat{\beta}-\beta \right) \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right)\left( U_{i}-\bar{U}\right) &=\frac{1}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}\left( \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) U_{i}\right) ^{2}. \end{align*} Conditionally on X’s, E\left[ \left( \hat{\beta}-\beta \right) \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) \left( U_{i}-\bar{U}\right) \right] = \frac{1}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}\left( \sigma ^{2}\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}\right)=\sigma ^{2}.
Using the three expectations above, E\sum_{i=1}^{n}\hat{U}_{i}^{2}=\left( n-1\right) \sigma ^{2}+\sigma^{2}-2\sigma ^{2}=\left( n-2\right) \sigma ^{2}, so s^{2} is unbiased for \sigma^{2}.