Lecture 5: Gauss-Markov Theorem
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There are many alternative estimators

e The OLS estimator is not the only estimator we can construct. There are alternative estimators with some
desirable properties.

o Example: Using only the first two observations, suppose that X, # Xj.

e [ 1is linear:

where

Unbiasedness of 3
e fY,=a+pX,4+ U, and E(U,|X4,...,X,,) =0, then 3 is unbiased:
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An optimality criterion

e Among all linear and unbiased estimators, an estimator with the smallest variance is called the Best
Linear Unbiased Estimator (BLUE).

e Note that the statement is conditional on X’s:
— The estimators are unbiased conditionally on X'’s.

— The variance is conditional on X’s.



Gauss-Markov Theorem
Suppose that
e V,=a+8X,+U,.
« EU,|X4,...,X,)=0.
e E(UZXy,...,X,)=0%forall i = 1,...,n (homoskedasticity).
e Foralli # j, B(U,U;|X,, ..., X,) = 0.
Then, conditionally on X’s, the OLS estimators are BLUE.

Gauss-Markov Theorem (setup)
e We already know that the OLS estimator @A’ is linear and unbiased (conditionally on X’s).
e Let 5 be any other estimator of 5 such that

— B is linear:

where ¢’s depend only on X's.

— [ is unbiased:

where expectation is conditional on X’s.

« We need to show that for any such 3 + B,
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Var(B8) > Var(B),

where the variance is conditional on X'’s.

An outline of the proof
1. First, we are going to show that the ¢’s in 3 = Z?zl c;Y; satisfy Z?zl ¢; =0 and Z?zl X, =1
= Var(B).
3. Using the results of Step 2, we will show that conditionally on X’s, Var(ﬁ) > Var(ﬁ).

2. Using the results of Step 1, we will show that conditionally on X’s, Cov(8, 3)

4. Lastly, we will show that Var(ﬁ) = Var(ﬁ) if and only if B = B

Proof: Step 1
« Since § = Z?Zl Y,
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« Conditionally on X’s,
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Proof: Step 1 (continued)

e From the linearity we have that, conditionally on X’s,
- n n
Eg = aZci —&—ﬂZciXi.
i—1 i—1
e From the unbiasedness we have that conditionally on X’s,

B=Ef= azn:ci+,6’zn:ciXi.
i=1 =1

e Since this has to be true for any a and 3, it follows now that

Proof: Step 2
e We have

g = ﬁ-i-ch 5, with zn:ci = O,Zn:ciXi =1.
P =1
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=5+ w;U;, with w;, = ————=—.
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e Conditionally on X’s,

Proof: Step 2 (continued)
Cov(B, B) = Zc w, E(U?) + chiij(Uin>'

o Since E(U?) = o? for all i’s:



o Since E(U;U;) = 0 for all i # j,

i=1 j#i
e Thus,
CouldB) = 3
=1
Proof: Step 2 (continued)
Conditionally on X’s:
. " X, —X
Cov(B, ) = o2 Z cw, and w, = —fg———=—.
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Proof: Step 3

e We know now that for any linear and unbiased 5,

Cov(B, ) = Var(h).

o Let’s consider Var(BN —p):
Var(§ — B) = Var(B) + Var(8) — 2Cov(5, )
= Var(g) + Var(B) — 2Var(3
= Var(8) — Var().

)

o But since Var(g— B) >0,
Var(g) — Var(B) >0

or

Var(é) > Var(BA).

Proof: Step 4 (Uniqueness)

Suppose that Var([i’N) = Var(f).

e Then, o _ -
Var(p—p) =Var() —Var(s) =0.

e Thus, B — B is not random or

~ ~

8 — B = constant.



o This constant also has to be zero because

EB = EﬁA + constant

= 3 + constant,

and in order for ,g to be unbiased o
constant =0 or 8 = f.
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