
Lecture 5: Gauss-Markov Theorem
Economics 326 — Introduction to Econometrics II

Vadim Marmer, UBC

There are many alternative estimators
• The OLS estimator is not the only estimator we can construct. There are alternative estimators with some

desirable properties.

• Example: Using only the first two observations, suppose that 𝑋2 ≠ 𝑋1.

̃𝛽 = 𝑌2 − 𝑌1
𝑋2 − 𝑋1

.

• ̃𝛽 is linear:
̃𝛽 = 𝑐1𝑌1 + 𝑐2𝑌2,

where
𝑐1 = − 1

𝑋2 − 𝑋1
and 𝑐2 = 1

𝑋2 − 𝑋1
.

Unbiasedness of ̃𝛽
• If 𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑈𝑖 and 𝐸(𝑈𝑖|𝑋1, … , 𝑋𝑛) = 0, then ̃𝛽 is unbiased:

̃𝛽 = 𝑌2 − 𝑌1
𝑋2 − 𝑋1

= (𝛼 + 𝛽𝑋2 + 𝑈2) − (𝛼 + 𝛽𝑋1 + 𝑈1)
𝑋2 − 𝑋1

= 𝛽(𝑋2 − 𝑋1)
𝑋2 − 𝑋1

+ 𝑈2 − 𝑈1
𝑋2 − 𝑋1

= 𝛽 + 𝑈2 − 𝑈1
𝑋2 − 𝑋1

, and

𝐸( ̃𝛽|𝑋1, 𝑋2) = 𝛽 + 𝐸 ( 𝑈2 − 𝑈1
𝑋2 − 𝑋1

∣𝑋1, 𝑋2)

= 𝛽 + 𝐸(𝑈2|𝑋1, 𝑋2) − 𝐸(𝑈1|𝑋1, 𝑋2)
𝑋2 − 𝑋1

= 𝛽.

An optimality criterion
• Among all linear and unbiased estimators, an estimator with the smallest variance is called the Best

Linear Unbiased Estimator (BLUE).

• Note that the statement is conditional on 𝑋’s:

– The estimators are unbiased conditionally on 𝑋’s.

– The variance is conditional on 𝑋’s.
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Gauss-Markov Theorem
Suppose that

• 𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑈𝑖.

• 𝐸(𝑈𝑖|𝑋1, … , 𝑋𝑛) = 0.

• 𝐸(𝑈2
𝑖 |𝑋1, … , 𝑋𝑛) = 𝜎2 for all 𝑖 = 1, … , 𝑛 (homoskedasticity).

• For all 𝑖 ≠ 𝑗, 𝐸(𝑈𝑖𝑈𝑗|𝑋1, … , 𝑋𝑛) = 0.

Then, conditionally on 𝑋’s, the OLS estimators are BLUE.

Gauss-Markov Theorem (setup)
• We already know that the OLS estimator ̂𝛽 is linear and unbiased (conditionally on 𝑋’s).

• Let ̃𝛽 be any other estimator of 𝛽 such that

– ̃𝛽 is linear:
̃𝛽 =

𝑛
∑
𝑖=1

𝑐𝑖𝑌𝑖,

where 𝑐’s depend only on 𝑋’s.

– ̃𝛽 is unbiased:
𝐸 ̃𝛽 = 𝛽,

where expectation is conditional on 𝑋’s.

• We need to show that for any such ̃𝛽 ≠ ̂𝛽,

𝑉 𝑎𝑟( ̃𝛽) > 𝑉 𝑎𝑟( ̂𝛽),

where the variance is conditional on 𝑋’s.

An outline of the proof
1. First, we are going to show that the 𝑐’s in ̃𝛽 = ∑𝑛

𝑖=1 𝑐𝑖𝑌𝑖 satisfy ∑𝑛
𝑖=1 𝑐𝑖 = 0 and ∑𝑛

𝑖=1 𝑐𝑖𝑋𝑖 = 1.

2. Using the results of Step 1, we will show that conditionally on 𝑋’s, 𝐶𝑜𝑣( ̃𝛽, ̂𝛽) = 𝑉 𝑎𝑟( ̂𝛽).
3. Using the results of Step 2, we will show that conditionally on 𝑋’s, 𝑉 𝑎𝑟( ̃𝛽) ≥ 𝑉 𝑎𝑟( ̂𝛽).
4. Lastly, we will show that 𝑉 𝑎𝑟( ̃𝛽) = 𝑉 𝑎𝑟( ̂𝛽) if and only if ̃𝛽 = ̂𝛽.

Proof: Step 1
• Since ̃𝛽 = ∑𝑛

𝑖=1 𝑐𝑖𝑌𝑖,

̃𝛽 =
𝑛

∑
𝑖=1

𝑐𝑖(𝛼 + 𝛽𝑋𝑖 + 𝑈𝑖)

= 𝛼
𝑛

∑
𝑖=1

𝑐𝑖 + 𝛽
𝑛

∑
𝑖=1

𝑐𝑖𝑋𝑖 +
𝑛

∑
𝑖=1

𝑐𝑖𝑈𝑖.
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• Conditionally on 𝑋’s,

𝐸 ̃𝛽 = 𝐸 (𝛼
𝑛

∑
𝑖=1

𝑐𝑖 + 𝛽
𝑛

∑
𝑖=1

𝑐𝑖𝑋𝑖 +
𝑛

∑
𝑖=1

𝑐𝑖𝑈𝑖)

= 𝛼
𝑛

∑
𝑖=1

𝑐𝑖 + 𝛽
𝑛

∑
𝑖=1

𝑐𝑖𝑋𝑖 +
𝑛

∑
𝑖=1

𝑐𝑖𝐸𝑈𝑖

= 𝛼
𝑛

∑
𝑖=1

𝑐𝑖 + 𝛽
𝑛

∑
𝑖=1

𝑐𝑖𝑋𝑖.

Proof: Step 1 (continued)
• From the linearity we have that, conditionally on 𝑋’s,

𝐸 ̃𝛽 = 𝛼
𝑛

∑
𝑖=1

𝑐𝑖 + 𝛽
𝑛

∑
𝑖=1

𝑐𝑖𝑋𝑖.

• From the unbiasedness we have that conditionally on 𝑋’s,

𝛽 = 𝐸 ̃𝛽 = 𝛼
𝑛

∑
𝑖=1

𝑐𝑖 + 𝛽
𝑛

∑
𝑖=1

𝑐𝑖𝑋𝑖.

• Since this has to be true for any 𝛼 and 𝛽, it follows now that
𝑛

∑
𝑖=1

𝑐𝑖 = 0,
𝑛

∑
𝑖=1

𝑐𝑖𝑋𝑖 = 1.

Proof: Step 2
• We have

̃𝛽 = 𝛽 +
𝑛

∑
𝑖=1

𝑐𝑖𝑈𝑖, with
𝑛

∑
𝑖=1

𝑐𝑖 = 0,
𝑛

∑
𝑖=1

𝑐𝑖𝑋𝑖 = 1.

̂𝛽 = 𝛽 +
𝑛

∑
𝑖=1

𝑤𝑖𝑈𝑖, with 𝑤𝑖 = 𝑋𝑖 − 𝑋̄
∑𝑛

𝑗=1(𝑋𝑗 − 𝑋̄)2 .

• Conditionally on 𝑋’s,

𝐶𝑜𝑣( ̃𝛽, ̂𝛽) = 𝐸[( ̃𝛽 − 𝛽)( ̂𝛽 − 𝛽)]

= 𝐸 [(
𝑛

∑
𝑖=1

𝑐𝑖𝑈𝑖) (
𝑛

∑
𝑖=1

𝑤𝑖𝑈𝑖)]

=
𝑛

∑
𝑖=1

𝑐𝑖𝑤𝑖𝐸(𝑈2
𝑖 ) +

𝑛
∑
𝑖=1

∑
𝑗≠𝑖

𝑐𝑖𝑤𝑗𝐸(𝑈𝑖𝑈𝑗).

Proof: Step 2 (continued)

𝐶𝑜𝑣( ̃𝛽, ̂𝛽) =
𝑛

∑
𝑖=1

𝑐𝑖𝑤𝑖𝐸(𝑈2
𝑖 ) +

𝑛
∑
𝑖=1

∑
𝑗≠𝑖

𝑐𝑖𝑤𝑗𝐸(𝑈𝑖𝑈𝑗).

• Since 𝐸(𝑈2
𝑖 ) = 𝜎2 for all 𝑖’s:

𝑛
∑
𝑖=1

𝑐𝑖𝑤𝑖𝐸(𝑈2
𝑖 ) = 𝜎2

𝑛
∑
𝑖=1

𝑐𝑖𝑤𝑖.
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• Since 𝐸(𝑈𝑖𝑈𝑗) = 0 for all 𝑖 ≠ 𝑗,
𝑛

∑
𝑖=1

∑
𝑗≠𝑖

𝑐𝑖𝑤𝑗𝐸(𝑈𝑖𝑈𝑗) = 0.

• Thus,

𝐶𝑜𝑣( ̃𝛽, ̂𝛽) = 𝜎2
𝑛

∑
𝑖=1

𝑐𝑖𝑤𝑖.

Proof: Step 2 (continued)
Conditionally on 𝑋’s:

𝐶𝑜𝑣( ̃𝛽, ̂𝛽) = 𝜎2
𝑛

∑
𝑖=1

𝑐𝑖𝑤𝑖 and 𝑤𝑖 = 𝑋𝑖 − 𝑋̄
∑𝑛

𝑗=1(𝑋𝑗 − 𝑋̄)2 .

𝐶𝑜𝑣( ̃𝛽, ̂𝛽) = 𝜎2
𝑛

∑
𝑖=1

𝑐𝑖
𝑋𝑖 − 𝑋̄

∑𝑛
𝑗=1(𝑋𝑗 − 𝑋̄)2

= 𝜎2

∑𝑛
𝑗=1(𝑋𝑗 − 𝑋̄)2

𝑛
∑
𝑖=1

𝑐𝑖(𝑋𝑖 − 𝑋̄)

= 𝜎2

∑𝑛
𝑗=1(𝑋𝑗 − 𝑋̄)2 (

𝑛
∑
𝑖=1

𝑐𝑖𝑋𝑖 − 𝑋̄
𝑛

∑
𝑖=1

𝑐𝑖)

= 𝜎2

∑𝑛
𝑗=1(𝑋𝑗 − 𝑋̄)2 (1 + 𝑋̄ ⋅ 0)

= 𝑉 𝑎𝑟( ̂𝛽).

Proof: Step 3
• We know now that for any linear and unbiased ̃𝛽,

𝐶𝑜𝑣( ̃𝛽, ̂𝛽) = 𝑉 𝑎𝑟( ̂𝛽).

• Let’s consider 𝑉 𝑎𝑟( ̃𝛽 − ̂𝛽):

𝑉 𝑎𝑟( ̃𝛽 − ̂𝛽) = 𝑉 𝑎𝑟( ̃𝛽) + 𝑉 𝑎𝑟( ̂𝛽) − 2𝐶𝑜𝑣( ̃𝛽, ̂𝛽)
= 𝑉 𝑎𝑟( ̃𝛽) + 𝑉 𝑎𝑟( ̂𝛽) − 2𝑉 𝑎𝑟( ̂𝛽)
= 𝑉 𝑎𝑟( ̃𝛽) − 𝑉 𝑎𝑟( ̂𝛽).

• But since 𝑉 𝑎𝑟( ̃𝛽 − ̂𝛽) ≥ 0,
𝑉 𝑎𝑟( ̃𝛽) − 𝑉 𝑎𝑟( ̂𝛽) ≥ 0

or
𝑉 𝑎𝑟( ̃𝛽) ≥ 𝑉 𝑎𝑟( ̂𝛽).

Proof: Step 4 (Uniqueness)
Suppose that 𝑉 𝑎𝑟( ̃𝛽) = 𝑉 𝑎𝑟( ̂𝛽).

• Then,
𝑉 𝑎𝑟( ̃𝛽 − ̂𝛽) = 𝑉 𝑎𝑟( ̃𝛽) − 𝑉 𝑎𝑟( ̂𝛽) = 0.

• Thus, ̃𝛽 − ̂𝛽 is not random or
̃𝛽 − ̂𝛽 = constant.
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• This constant also has to be zero because

𝐸 ̃𝛽 = 𝐸 ̂𝛽 + constant
= 𝛽 + constant,

and in order for ̃𝛽 to be unbiased
constant = 0 or ̃𝛽 = ̂𝛽.
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