Economics 326 — Introduction to Econometrics II
Var\left( \hat{\beta} \mid X_{1}, \ldots, X_{n}\right) = \frac{\sigma^{2}}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}.
We have \begin{aligned} Var\left( \hat{\beta}\right) &= \left( \frac{1}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}\right) ^{2} E\left[ \left( \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) U_{i}\right) ^{2}\right], \\ E\left[ \left( \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) U_{i}\right) ^{2}\right] &= \sigma^{2}\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}, \end{aligned} and therefore, \begin{aligned} Var\left( \hat{\beta}\right) &= \left( \frac{1}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}\right) ^{2} \sigma^{2}\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2} \\ &= \left( \frac{1}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}\right) \sigma^{2}. \end{aligned}