Economics 326 — Introduction to Econometrics II
\gdef\E#1{\mathrm{E}\left[#1\right]} \gdef\Var#1{\mathrm{Var}\left(#1\right)}
\hat{\beta} is called an unbiased estimator if \E{\hat{\beta}} = \beta.
Claim: Suppose that
\hat{\beta} = \frac{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) Y_{i}}{ \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}
\phantom{\hat{\beta}} = \frac{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) \left( \alpha +\beta X_{i}+U_{i}\right) }{ \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}
\phantom{\hat{\beta}} = \alpha \frac{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) }{ \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}} + \beta \frac{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) X_{i}}{ \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}} + \frac{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) U_{i}}{ \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}
\phantom{\hat{\beta}} = \alpha \frac{0}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}} + \beta \frac{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}{ \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) ^{2}} + \frac{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) U_{i}}{ \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}
\hat{\beta}={\color{blue}\underbrace{\beta}_{\text{signal}}} +{\color{red}\underbrace{\frac{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) U_{i}}{ \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}}_{\text{noise}}}
\Var{\hat{\beta} \mid \mathbf{X}} = \frac{\sigma^{2}}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}.
We have \hat{\beta}=\beta +\frac{\sum_{i=1}^{n}\left( X_{i}-\bar{X} \right) U_{i}}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}} and \E{\hat{\beta} \mid \mathbf{X}}=\beta. \begin{aligned} \Var{\hat{\beta} \mid \mathbf{X}} & = \E{\left( \hat{\beta}-\E{\hat{\beta} \mid \mathbf{X}}\right) ^{2} \mid \mathbf{X}} \\ &= \E{\left( \frac{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) U_{i}}{ \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}\right) ^{2} \mid \mathbf{X}} \\ &= \left( \frac{1}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}\right) ^{2} \E{\left( \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) U_{i}\right) ^{2} \mid \mathbf{X}}. \end{aligned}
Expanding the square, \begin{aligned} \left( \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) U_{i}\right) ^{2} &= \sum_{i=1}^{n}\sum_{j=1}^{n}\left( X_{i}-\bar{X}\right) \left( X_{j}-\bar{X}\right) U_{i}U_{j} \\ &= \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}U_{i}^{2}\\ &\quad + \sum_{i=1}^{n}\sum_{j\neq i}\left( X_{i}-\bar{X}\right) \left( X_{j}-\bar{X}\right) U_{i}U_{j}. \end{aligned}
Since \E{U_{i}U_{j} \mid \mathbf{X}} = 0 for i \neq j, \begin{aligned} \E{\left( \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) U_{i}\right) ^{2} \mid \mathbf{X}} &= \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}\E{U_{i}^{2} \mid \mathbf{X}} + 0 \\ &= \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}\sigma^{2}. \end{aligned}
We have \begin{aligned} &\Var{\hat{\beta} \mid \mathbf{X}} = \left( \frac{1}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}\right) ^{2} \E{\left( \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) U_{i}\right) ^{2} \mid \mathbf{X}}, \\ &\E{\left( \sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) U_{i}\right) ^{2} \mid \mathbf{X}} = \sigma^{2}\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}, \end{aligned} and therefore, \begin{aligned} \Var{\hat{\beta} \mid \mathbf{X}} &= \left( \frac{1}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}\right) ^{2} \sigma^{2}\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2} \\ &= \left( \frac{1}{\sum_{i=1}^{n}\left( X_{i}-\bar{X}\right) ^{2}}\right) \sigma^{2}. \end{aligned}