
Lecture 4: Properties of OLS
Economics 326 — Introduction to Econometrics II

Vadim Marmer, UBC

Properties of Estimators
OLS Estimators as Random Variables

• The model
𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑈𝑖,

𝐸 (𝑈𝑖 ∣ 𝑋1, … , 𝑋𝑛) = 0.
Conditioning on 𝑋 in 𝐸 (𝑈𝑖 ∣ 𝑋1, … , 𝑋𝑛) = 0 allows us to treat all 𝑋’s as fixed, but 𝑌 is still random.

• The estimators
̂𝛽 = ∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋̄) 𝑌𝑖

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 and ̂𝛼 = ̄𝑌 − ̂𝛽𝑋̄

are random because they are functions of random data.

Linearity of Estimators
• Since

̂𝛽 = ∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄) 𝑌𝑖

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 ,

we can write ̂𝛽 = ∑𝑛
𝑖=1 𝑤𝑖𝑌𝑖, where

𝑤𝑖 = 𝑋𝑖 − 𝑋̄
∑𝑛

𝑙=1 (𝑋𝑙 − 𝑋̄)2 .

After conditioning on 𝑋’s, 𝑤𝑖’s are not random.
• For ̂𝛼,

̂𝛼 = ̄𝑌 − ̂𝛽𝑋̄

= 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖 − (
𝑛

∑
𝑖=1

𝑤𝑖𝑌𝑖) 𝑋̄

=
𝑛

∑
𝑖=1

( 1
𝑛 − 𝑋̄𝑤𝑖) 𝑌𝑖

=
𝑛

∑
𝑖=1

⎛⎜
⎝

1
𝑛 − 𝑋̄ 𝑋𝑖 − 𝑋̄

∑𝑛
𝑙=1 (𝑋𝑙 − 𝑋̄)2

⎞⎟
⎠

𝑌𝑖.

Unbiasedness
Definition of Unbiasedness

• ̂𝛽 is called an unbiased estimator if 𝐸 ̂𝛽 = 𝛽.
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• Suppose that 𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑈𝑖, 𝐸 (𝑈𝑖 ∣ 𝑋1, … , 𝑋𝑛) = 0. Then 𝐸 ̂𝛽 = 𝛽.

̂𝛽 = ∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄) 𝑌𝑖

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2

= ∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄) (𝛼 + 𝛽𝑋𝑖 + 𝑈𝑖)

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2

= 𝛼 ∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 + 𝛽 ∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋̄) 𝑋𝑖

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 + ∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋̄) 𝑈𝑖

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2

= 𝛼 0
∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋̄)2 + 𝛽 ∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 + ∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋̄) 𝑈𝑖

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 .

• or
̂𝛽 = 𝛽 + ∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋̄) 𝑈𝑖

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 .

Conditioning on Regressors
• Once we condition on 𝑋1, … , 𝑋𝑛, all 𝑋’s in

̂𝛽 = 𝛽 + ∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄) 𝑈𝑖

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2

can be treated as fixed.
• Thus,

𝐸 ( ̂𝛽 ∣ 𝑋1, … , 𝑋𝑛) = 𝐸 ⎛⎜
⎝

𝛽 + ∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄) 𝑈𝑖

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 ∣ 𝑋1, … , 𝑋𝑛⎞⎟

⎠

= 𝛽 + 𝐸 ⎛⎜
⎝

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄) 𝑈𝑖

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 ∣ 𝑋1, … , 𝑋𝑛⎞⎟

⎠

= 𝛽 + ∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄) 𝐸 (𝑈𝑖 ∣ 𝑋1, … , 𝑋𝑛)

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 .

Proof of Unbiasedness
• Thus, with 𝐸 (𝑈𝑖 ∣ 𝑋1, … , 𝑋𝑛) = 0, we have

𝐸 ( ̂𝛽 ∣ 𝑋1, … , 𝑋𝑛) = 𝛽 + ∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄) 𝐸 (𝑈𝑖 ∣ 𝑋1, … , 𝑋𝑛)

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2

= 𝛽 + ∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄) ⋅ 0

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 = 𝛽.

• By the LIE, 𝐸 ̂𝛽 = 𝐸 [𝐸 ( ̂𝛽 ∣ 𝑋1, … , 𝑋𝑛)] = 𝐸 [𝛽] = 𝛽.

Strong Exogeneity of Regressors
• The regressor 𝑋 is strongly exogenous if 𝐸 (𝑈𝑖 ∣ 𝑋1, … , 𝑋𝑛) = 0.
• Alternatively, we can assume that 𝐸 (𝑈𝑖 ∣ 𝑋𝑖) = 0 and all observations are independent:

𝐸 (𝑈1 ∣ 𝑋1, … , 𝑋𝑛) = 𝐸 (𝑈1 ∣ 𝑋1) ,
𝐸 (𝑈2 ∣ 𝑋1, … , 𝑋𝑛) = 𝐸 (𝑈2 ∣ 𝑋2) and etc.

• The OLS estimator is in general biased if the strong exogeneity assumption is violated.
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Variance of the Slope Estimator
Variance Formula and Homoskedasticity

• If 𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑈𝑖, 𝐸 (𝑈𝑖 ∣ 𝑋1, … , 𝑋𝑛) = 0, and

𝐸 (𝑈2
𝑖 ∣ 𝑋1, … , 𝑋𝑛) = 𝜎2 = constant,

and for 𝑖 ≠ 𝑗
𝐸 (𝑈𝑖𝑈𝑗 ∣ 𝑋1, … , 𝑋𝑛) = 0,

then
𝑉 𝑎𝑟 ( ̂𝛽 ∣ 𝑋1, … , 𝑋𝑛) = 𝜎2

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 .

• The assumption 𝐸 (𝑈2
𝑖 ∣ 𝑋1, … , 𝑋𝑛) = 𝜎2 = constant is called (conditional) homoskedasticity.

• The assumption 𝐸 (𝑈𝑖𝑈𝑗 ∣ 𝑋1, … , 𝑋𝑛) = 0 for 𝑖 ≠ 𝑗 can be replaced by the assumption that the observations
are independent.

Determinants of Variance

𝑉 𝑎𝑟 ( ̂𝛽 ∣ 𝑋1, … , 𝑋𝑛) = 𝜎2

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2 .

• The variance of ̂𝛽 is positively related to the variance of the errors 𝜎2 = 𝑉 𝑎𝑟 (𝑈𝑖).
• The variance of ̂𝛽 is smaller when 𝑋’s are more dispersed.

Derivation of Variance: Setup
• We are going to condition on 𝑋’s and will treat them as constants. All expectations below are implicitly

conditional on 𝑋’s.
• We have ̂𝛽 = 𝛽 + ∑𝑛

𝑖=1(𝑋𝑖−𝑋̄)𝑈𝑖

∑𝑛
𝑖=1(𝑋𝑖−𝑋̄)2 and 𝐸 ̂𝛽 = 𝛽.

𝑉 𝑎𝑟 ( ̂𝛽) = 𝐸 [( ̂𝛽 − 𝐸 ̂𝛽)
2
]

= 𝐸 ⎡⎢
⎣

⎛⎜
⎝

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄) 𝑈𝑖

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2

⎞⎟
⎠

2
⎤⎥
⎦

= ⎛⎜
⎝

1
∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋̄)2
⎞⎟
⎠

2

𝐸 ⎡⎢
⎣

(
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝑋̄) 𝑈𝑖)
2
⎤⎥
⎦

.

Derivation of Variance: Expansion
• Expanding the square,

(
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝑋̄) 𝑈𝑖)
2

=
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

(𝑋𝑖 − 𝑋̄) (𝑋𝑗 − 𝑋̄) 𝑈𝑖𝑈𝑗

=
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝑋̄)2 𝑈2
𝑖 +

𝑛
∑
𝑖=1

∑
𝑗≠𝑖

(𝑋𝑖 − 𝑋̄) (𝑋𝑗 − 𝑋̄) 𝑈𝑖𝑈𝑗.

• Since 𝐸 (𝑈𝑖𝑈𝑗) = 0 for 𝑖 ≠ 𝑗,

𝐸 ⎡⎢
⎣

(
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝑋̄) 𝑈𝑖)
2
⎤⎥
⎦

=
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝑋̄)2 𝐸𝑈2
𝑖 + 0

=
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝑋̄)2 𝜎2.
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Derivation of Variance: Final Step
We have

𝑉 𝑎𝑟 ( ̂𝛽) = ⎛⎜
⎝

1
∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋̄)2
⎞⎟
⎠

2

𝐸 ⎡⎢
⎣

(
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝑋̄) 𝑈𝑖)
2
⎤⎥
⎦

,

𝐸 ⎡⎢
⎣

(
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝑋̄) 𝑈𝑖)
2
⎤⎥
⎦

= 𝜎2
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝑋̄)2 ,

and therefore,

𝑉 𝑎𝑟 ( ̂𝛽) = ⎛⎜
⎝

1
∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋̄)2
⎞⎟
⎠

2

𝜎2
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝑋̄)2

= ⎛⎜
⎝

1
∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋̄)2
⎞⎟
⎠

𝜎2.

Distribution of the Slope Estimator
Normality of the OLS Estimator

• Assume that 𝑈𝑖’s are jointly normally distributed conditional on 𝑋’s.
• Then 𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑈𝑖 are also jointly normally distributed.
• Since ̂𝛽 = ∑𝑛

𝑖=1 𝑤𝑖𝑌𝑖, where 𝑤𝑖 = 𝑋𝑖−𝑋̄
∑𝑛

𝑙=1(𝑋𝑙−𝑋̄)2 depend only on 𝑋’s, ̂𝛽 is also normally distributed conditional
on 𝑋’s.

• Conditional on 𝑋1, … , 𝑋𝑛
̂𝛽 ∼ 𝑁 (𝐸 ̂𝛽, 𝑉 𝑎𝑟 ( ̂𝛽))

∼ 𝑁 ⎛⎜
⎝

𝛽, 𝜎2

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2

⎞⎟
⎠

.
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