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Properties of Estimators

OLS Estimators as Random Variables

e The model
Yi=a+pX; +U;,

EU | X,,...,X,) =0.

Conditioning on X in E (U, | Xq,...,X,,) = 0 allows us to treat all X’s as fixed, but Y is still random.

¢ The estimators n _
Zi:1 (Xi — X) Y;

Z?:l (Xi - X)Z

are random because they are functions of random data.
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Linearity of Estimators
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After conditioning on X’s, w;’s are not random.
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Unbiasedness

Definition of Unbiasedness

. B is called an unbiased estimator if EBA = 0.



« Suppose that Y; = a + X, + U,, E(U, | X,,...,X,,) = 0. Then Ej = §.
S (X - X)Y

B =
Zz:l (XZ - X)
Y (X = X) (e BX + 1)

- Z?:l (Xi*X)Q
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Conditioning on Regressors
e Once we condition on X,..., X, all X’sin
- Y -X)U;
fopy Ko X0
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can be treated as fixed.
e Thus, B
A - X UZ-
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Proof of Unbiasedness

o Thus, with E(U; | X4,...,X,,) =0, we have

E(B|X,,...X,) =8+

Z? 1<X _X)
=B+ Z’zl (X~ %) 20 =p.
Z31:1 (XZ_X)

« Bythe LIE, E=E[E (6| X,,... X, )| = E[8] = 8.

Strong Exogeneity of Regressors

o The regressor X is strongly exogenous if E (U, | X;,...,X,,) =0.
o Alternatively, we can assume that F (U, | X;) = 0 and all observations are independent:

E(Ul | X17'-~7Xn) = E<U1 ‘ X1)7
EU,| Xy,...,X,) =E (U, | X,) and etc.

e The OLS estimator is in general biased if the strong exogeneity assumption is violated.



Variance of the Slope Estimator

Variance Formula and Homoskedasticity
« fY,=a+8X,+U, E(U, | X,,...,X,) =0, and
E(U?| X4,...,X,,) = 0? = constant,
and for ¢ # j
E(UU; | Xy, .., X,) =0,

then

o2

-
Zi:l <Xi - X )
o The assumption E (U? | X, ..., X,,) = 0% = constant is called (conditional) homoskedasticity.

e The assumption F (Uin | X4, ... ,Xn) = 0 for ¢ # j can be replaced by the assumption that the observations
are independent.

Var (B] X,,..,X,) =

Determinants of Variance

02

E?:l (Xi - X)T

e The variance of B is positively related to the variance of the errors o = Var (U;).

Var (B] X,,..,X,) =

e The variance of § is smaller when X’s are more dispersed.

Derivation of Variance: Setup

e We are going to condition on X’s and will treat them as constants. All expectations below are implicitly
conditional on X’s.

o We have 5 = ﬁ + ZLLzl(Xy—X:)gl

72?:1(&7)() and EfS = .

Var (3) = E {(3_]5/;)2]

Z?:1 (Xi - X)
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Derivation of Variance: Expansion

o Expanding the square,

i=1

(i (X, - X) Ui>2 =3 (K- X) (%, - X) U,
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e Since F (Uin) =0 for i # j,




Derivation of Variance: Final Step
We have

and therefore,

()
Z?:l (Xi _X)Z .

Distribution of the Slope Estimator
Normality of the OLS Estimator

o Assume that U,’s are jointly normally distributed conditional on X’s.
e Then Y; = a+ X, + U, are also jointly normally distributed.

e Since 5 = Z?;l w,;Y;, where w, = — X=X depend only on X's, B is also normally distributed conditional

S (X —X)
on X'’s.

o Conditional on X,..., X

? n

B~N (EB, Var (ﬁ))

Zi:l (Xi*X)
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