Lecture 2: Review of Probability
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Randomness

¢« Random experiment: an experiment the outcome of which cannot be predicted with certainty, even if the
experiment is repeated under the same conditions.

e Event: a collection of outcomes of a random experiment.
o Probability: a function from events to [0, 1] interval.

— If Q is a collection of all possible outcomes, P(2) = 1.
— If Ais an event, P(A) > 0.
— If A, A,, ... is a sequence of disjoint events, P(A; or Ay or ...) = P(A;) + P(A4y) + ....

Random variable
¢« Random variable: a numerical representation of a random experiment.

e Coin-flipping example:

Outcome X Y Z
Heads 0 1 -1

Tails 1 0 1
e Rolling a dice
Outcome X Y
1 1 0
2 2 1
3 3 0
4 4 1
) 5 0
6 6 1
Summation operator
o Let {z;:i=1,...,n} be a sequence of numbers.

n

in =X+ Ty + ...+,
i=1

e For a constant c:

3

¢ = nc.
i—1

n n

cr; =clx;+x9+...+x,)=C E x;.

3 =1
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Summation operator (continued)

o Let {y; :i=1,...,n} be another sequence of numbers, and a,b be two constants:

n

Z(aazi +by;) = azn:xi + bei.

i=1 i=1 =1

e But:

Discrete random variables
We often distinguish between discrete and continuous random variables.
e A discrete random variable takes on only a finite or countably infinite number of values.

e The distribution of a discrete random variable is a list of all possible values and the probability that each
value would occur:

Value Ty Ty ... T,

Probability p;, p, ... bp,

Here p, denotes the probability of a random variable X taking on value z;:
p; = P(X = ;) (Probability Mass Function (PMF)).
Each p, is between 0 and 1, and Z?Zl p;, = 1.

Example: Bernoulli distribution

o Consider a single trial with two outcomes: “success” (with probability p) or “failure” (with probability 1 — p).

¥ — 1 if success
0 if failure
o Then X follows a Bernoulli distribution: X ~ Bernoulli(p).
« PMF:

¢ Define the random variable:

P(X =z)=p"(1 *p)lixv z €{0,1}.

Discrete random variables (continued)

{1 ife, <z
1(x; <x) =

¢ Indicator function:

0 ifz, >z
o Cumulative Distribution Function (CDF):
F(o) = PX < 0) = 3 pille, <)
i

o F(x) is non-decreasing.

e For discrete random variables, the CDF is a step function.



Example: CDF of Bernoulli(0.3)
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0 ifx <0
Flz)=<1—-p if0<z<1
1 if £ >1

Continuous random variable

e A random variable is continuously distributed if the range of possible values it can take is uncountable infinite
(for example, a real line).

e A continuous random variable takes on any real value with zero probability.
e For continuous random variables, the CDF is continuous and differentiable.

o The derivative of the CDF is called the Probability Density Function (PDF):

dF(z)

Fa) = ) and Fla) = / F(w)du:

[: f(z)dx = 1.

o Since F(x) is non-decreasing, f(x) > 0 for all z.

Example: Uniform distribution

o A random variable X follows a Uniform distribution on [0,1], written X ~ Uniform(0,1), if it is equally
likely to take any value in [0, 1].

o PDF:

f<$){1 ifo<z<1

0 otherwise
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Joint distribution (discrete)
e Two random variables X, Y
" vs Yo Marginal
m
1 P11 P12 Pim =2 1Py
X g’l
Lo P21 Pag Pam by = ijl P2;
: : : : : : m
Ln, Pn1 Pno Pnm pi{ = Zj:l Py

Joint PMF: p,; = P(X =z,,Y =y;).
Marginal PMF: pX = P(X =z,) = Z;n:l Dij-
o Conditional Distribution: If P(X = z;) # 0,

Y|X=z J
pj‘ 1:P<Y:yj‘X:$1): =5

Joint distribution (continuous)

o Joint PDF: fy y(7,y) and Lo;o fj:o Ixy(z,y)dzdy = 1.



o Marginal PDF: fy(x) = Lo:o Ixy(z,y)dy.
o Conditional PDF: fY‘X:m(y|x) = fxy(@,9)/fx(z).

Independence

o Two (discrete) random variables are independent if for all z,y:

PX=2,Y=y)=PX=x)P(Y =y).

e If independent:

PY=ylX=x)= =P(Y =vy).

¢ Two continuous random variables are independent if for all z, y:
fX,Y(CE»Zﬂ = fx(@)fy(y)-

o If independent, fy x(ylz) = fy(y) for all z.

Expected value

e Let g be some function:
Eg(X) = ZQ(%)I% (discrete).

Eg(X) = /g(x)f(ac)dx (continuous).

Expectation is a transformation of a distribution (PMF or PDF) and is a constant!

o Mean (center of a distribution):

EX = inpi or EX = /xf(m)da:

 Variance (spread of a distribution): Var(X) = E(X — EX)?

Var(X) = Z(wl — EX)?p; or Var(X) = /(x — EX)?f(z)dx.
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o Standard deviation: y/Var(X).

Example: Bernoulli distribution (continued)
e Recall: X ~ Bernoulli(p) takes values {0,1} with P(X =1) =pand P(X =0)=1—p.
e Mean:
E(X)=0-(1-p)+1:-p=p.
o Variance:
E(X?)=0%-(1-p)+1*-p=p.
Var(X) = B(X?) — (EX)*=p—p* =p(1—p).



Example: Uniform distribution (continued)

o Recall: X ~ Uniform(0,1) has PDF f(z) =1 for z € [0, 1].

e Mean:
1 21 1
E(X):/ z-lde = —| = =.
0 0 2
e Variance:
1 x31 1
E(Xz):/ 2?2 lde = —| =-.
0 0 3
1 /1\ 1 1 1
= 2y _ 2:—— —_ = = — — = —
Var(X) = B(X?) - (BX)” = 5 (2) S 1=

Properties

e If ¢ is a constant, Ec = ¢, and
Var(c) = E(c— Ec)? = (¢ —¢)?> = 0.

o Linearity:

Ela+bX) = Z(a—{—bxi)pi = aZpi—FbZzipi =a+bEX.
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o Re-centering: a random variable X — EX has mean zero:

E(X —EX)=FEX—E(EX)=EX—EX =0.

Properties (continued)

e Variance formula: Var(X) = EX? — (EX)?

Var(X) = E(X — EX)?

= E[(X — EX)(X — EX)]

= E[(X — EX)X — (X — EX) - EX]

= E[(X — EX)X] — E[(X — EX) - EX]
= E[X?— X.EX]— EX - E(X — EX)
= EX?—EX-EX—FEX-0

= EX? — (EX)?

o If EX =0 then Var(X) = EX2.

Properties (continued)
e Var(a+bX)=0b*Var(X)
Var(a+bX) = E[(a+bX) — E(a + bX)]?

Ela+bX —a—bEX]?

E[bX —bEX]? = E[b2(X — EX)?]
b2

b2

E(X —EX)?
Var(X).

e Re-scaling: Let Var(X) = o2, so the standard deviation is o:

X 1
Var (;) = ;Var(X) =1.



Covariance

e Covariance: Let X,Y be two random variables.
Cov(X,Y)=FE[(X—-—EX)Y —EY)].

Cov(X,Y) ZZ v, —EX)(y; —EY) - P(X =2,,Y =y,).

Cov(X,Y) = //(ac —EX)(y— EY) fxy(z,y)dzdy.

e Cou(X,Y)=E(XY)— EX)E(Y).

Cov(X,Y) = E[(X — EX)(Y — EY)] = E(XY)— EX - EY.

Properties of covariance

e Cov(X,c)=0.

o Cov(X,X)=Var(X).

Y)=Cou(Y, X).

X, Y+ 2)=Cov(X,Y)+ Cov(X, Z).

+ b, X, a9+ bY) =b,0,Cov(X,Y).
o If X and Y are independent then Cov(X,Y) = 0.
e Var(X+Y)=Var(X)+ Var(Y) £ 2Cou(X,Y).

L4 ov

(X
ou(X
(
ov(ay

Correlation

o Correlation coefficient:
Cov(X,Y)

Corr(X,Y) = Var(X)\Var(Y)

o Cauchy-Schwartz inequality: |Cov(X,Y)| < \/Var(X)Var(Y) and therefore

—1<Corr(X,Y) <1
e Corr(X,Y)=4l<Y =a+bX.

Conditional expectation

e Suppose you know that X = x. You can update your expectation of Y by conditional expectation:

EY|X =2z Zyz =y,|X = z) (discrete)

EY|X =2)= /yfy\x(y|m)dy (continuous).

e E(Y|X = x) is a constant.

e E(Y|X) is a function of X and is a random variable and a function of X (Uncertainty about X has not been
realized yet):

E(Y|X) = Zyz Y =y, X) = g(X)

B(Y|X) = / v (w1 X)dy = g(X),

for some function g that depends on PMF (PDF).



Properties of conditional expectation
o Conditional expectations satisfies all properties of unconditional expectation.
e Once you condition on X, you can treat any function of X as a constant:
E(hy(X) + hy(X)Y|X) = by (X) + hy(X) E(Y]X),
for any functions h; and h,.
o Law of Iterated Expectation (LIE):
E[E(Y|X)] = E(Y),
E(E(Y|X,Z)|X)=E(Y|X).

¢ Conditional variance:

Var(Y|X) = E[(Y — B(Y|X))2|X].

e Mean independence:
E(Y|X) = E(Y) = constant.
Relationship between different concepts of independence

X and Y are independent
\

E(Y|X) = constant (mean independence)

4
Cov(X,Y) = 0 (uncorrelatedness)

Normal distribution

e A normal rv is a continuous rv that can take on any value. The PDF of a normal rv X is

Ry
flz) = \/2;7@(10 (—(mmjg) > , where

u=EX and 0% = Var(X).

We usually write X ~ N (p,0?).
o If X ~ N(u,0?), then a +bX ~ N(a+ bu,b*c?).

Standard Normal distribution
« Standard Normal rv has g = 0 and 0% = 1. Its PDF is ¢(z) = \/% exp (—%)
o Symmetric around zero (mean): if Z ~ N(0,1), P(Z > z) = P(Z < —=z).
« Thin tails: P(—1.96 < Z < 1.96) = 0.95.

o If X ~ N(u,0?), then (X —p)/o ~ N(0,1).

Bivariate Normal distribution
e X and Y have a bivariate normal distribution if their joint PDF is given by:

B 1 Q
flay) = 2m\/(1 — p)2o%o% P [_2(1_0)2} ,

where @ = @opx)® 4 ony)® 2p E=px)y—ny)
% o

v OxOy ’

px = E(X),uy = E(Y),0% = Var(X),0% = Var(Y), and p = Corr(X,Y).



Properties of Bivariate Normal distribution

If X and Y have a bivariate normal distribution:

e a+bX +cY ~ N(p*, (0*)?), where

W=a+buy +cuy, (0%)*=0b%0%+ 2o+ 2bcpo oy

e Cov(X,Y)=0= X and Y are independent.
o E(Y|X)=py+ #(X 1x)-

o Can be generalized to more than 2 variables (multivariate normal).

Appendix: The Cauchy-Schwartz Inequality

o Claim: |Cov(X,Y)| < /Var(X)Var(Y).
o Proof: Define
U=Y —BX,

where

5= Cov(X,Y)
 Var(X)

— Note that g is a constant!
— Also note the connection to regression and OLS in the definition of 3.

e Since variances are always non-negative:

0<Var(U)

= Var(Y — BX) (det. of U)
=Var(Y)+ Var(8X) —2Cov(Y, 8X) (prop. of var.)
=Var(Y) + 82Var(X) —2BCov(X,Y) (prop. of var., cov.)
B Cov(X,Y) 2
= VCLT(Y) + (W) VCL’I"(X)

—32
Cov(X,Y)

-2 <W> Cov(X,Y) (def. of B)
=5

Cov(X,Y)? Cov(X,Y)?
Var(X) ° Var(X)

Cov(X,Y)?
Var(X)

=Var(Y) +
=Var(Y)—

e Rearranging:
Cov(X,Y)? < Var(X)Var(Y)

|Cov(X,Y)| < /Var(X)Var(Y).
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