
Lecture 2: Review of Probability
Economics 326 — Introduction to Econometrics II

Vadim Marmer, UBC

Randomness
• Random experiment: an experiment the outcome of which cannot be predicted with certainty, even if the

experiment is repeated under the same conditions.

• Event: a collection of outcomes of a random experiment.

• Probability: a function from events to [0, 1] interval.

– If Ω is a collection of all possible outcomes, 𝑃(Ω) = 1.
– If 𝐴 is an event, 𝑃(𝐴) ≥ 0.
– If 𝐴1, 𝐴2, … is a sequence of disjoint events, 𝑃(𝐴1 or 𝐴2 or …) = 𝑃(𝐴1) + 𝑃(𝐴2) + ….

Random variable
• Random variable: a numerical representation of a random experiment.

• Coin-flipping example:

Outcome 𝑋 𝑌 𝑍
Heads 0 1 -1
Tails 1 0 1

• Rolling a dice

Outcome 𝑋 𝑌
1 1 0
2 2 1
3 3 0
4 4 1
5 5 0
6 6 1

Summation operator
• Let {𝑥𝑖 ∶ 𝑖 = 1, … , 𝑛} be a sequence of numbers.

𝑛
∑
𝑖=1

𝑥𝑖 = 𝑥1 + 𝑥2 + … + 𝑥𝑛.

• For a constant 𝑐: 𝑛
∑
𝑖=1

𝑐 = 𝑛𝑐.

𝑛
∑
𝑖=1

𝑐𝑥𝑖 = 𝑐(𝑥1 + 𝑥2 + … + 𝑥𝑛) = 𝑐
𝑛

∑
𝑖=1

𝑥𝑖.

1



Summation operator (continued)
• Let {𝑦𝑖 ∶ 𝑖 = 1, … , 𝑛} be another sequence of numbers, and 𝑎, 𝑏 be two constants:

𝑛
∑
𝑖=1

(𝑎𝑥𝑖 + 𝑏𝑦𝑖) = 𝑎
𝑛

∑
𝑖=1

𝑥𝑖 + 𝑏
𝑛

∑
𝑖=1

𝑦𝑖.

• But: 𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖 ≠
𝑛

∑
𝑖=1

𝑥𝑖
𝑛

∑
𝑖=1

𝑦𝑖.

𝑛
∑
𝑖=1

𝑥𝑖
𝑦𝑖

≠ ∑𝑛
𝑖=1 𝑥𝑖

∑𝑛
𝑖=1 𝑦𝑖

.

𝑛
∑
𝑖=1

𝑥2
𝑖 ≠ (

𝑛
∑
𝑖=1

𝑥𝑖)
2

.

Discrete random variables
We often distinguish between discrete and continuous random variables.

• A discrete random variable takes on only a finite or countably infinite number of values.

• The distribution of a discrete random variable is a list of all possible values and the probability that each
value would occur:

Value 𝑥1 𝑥2 … 𝑥𝑛

Probability 𝑝1 𝑝2 … 𝑝𝑛

Here 𝑝𝑖 denotes the probability of a random variable 𝑋 taking on value 𝑥𝑖:
𝑝𝑖 = 𝑃(𝑋 = 𝑥𝑖) (Probability Mass Function (PMF)).

Each 𝑝𝑖 is between 0 and 1, and ∑𝑛
𝑖=1 𝑝𝑖 = 1.

Example: Bernoulli distribution
• Consider a single trial with two outcomes: “success” (with probability 𝑝) or “failure” (with probability 1 − 𝑝).

• Define the random variable:

𝑋 = {1 if success
0 if failure

• Then 𝑋 follows a Bernoulli distribution: 𝑋 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝).
• PMF:

𝑃(𝑋 = 𝑥) = 𝑝𝑥(1 − 𝑝)1−𝑥, 𝑥 ∈ {0, 1}.

Discrete random variables (continued)
• Indicator function:

1(𝑥𝑖 ≤ 𝑥) = {1 if 𝑥𝑖 ≤ 𝑥
0 if 𝑥𝑖 > 𝑥

• Cumulative Distribution Function (CDF):
𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑

𝑖
𝑝𝑖1(𝑥𝑖 ≤ 𝑥).

• 𝐹(𝑥) is non-decreasing.

• For discrete random variables, the CDF is a step function.
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Example: CDF of Bernoulli(0.3)
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𝐹(𝑥) =
⎧{
⎨{⎩

0 if 𝑥 < 0
1 − 𝑝 if 0 ≤ 𝑥 < 1
1 if 𝑥 ≥ 1

Continuous random variable
• A random variable is continuously distributed if the range of possible values it can take is uncountable infinite

(for example, a real line).

• A continuous random variable takes on any real value with zero probability.

• For continuous random variables, the CDF is continuous and differentiable.

• The derivative of the CDF is called the Probability Density Function (PDF):

𝑓(𝑥) = 𝑑𝐹(𝑥)
𝑑𝑥 and 𝐹(𝑥) = ∫

𝑥

−∞
𝑓(𝑢)𝑑𝑢;

∫
∞

−∞
𝑓(𝑥)𝑑𝑥 = 1.

• Since 𝐹(𝑥) is non-decreasing, 𝑓(𝑥) ≥ 0 for all 𝑥.

Example: Uniform distribution
• A random variable 𝑋 follows a Uniform distribution on [0, 1], written 𝑋 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1), if it is equally

likely to take any value in [0, 1].
• PDF:

𝑓(𝑥) = {1 if 0 ≤ 𝑥 ≤ 1
0 otherwise
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• CDF:

𝐹(𝑥) =
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0 if 𝑥 < 0
𝑥 if 0 ≤ 𝑥 ≤ 1
1 if 𝑥 > 1
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Joint distribution (discrete)
• Two random variables 𝑋, 𝑌

𝑦1 𝑦2 ⋯ 𝑦𝑚 Marginal
𝑥1 𝑝11 𝑝12 ⋯ 𝑝1𝑚 𝑝𝑋

1 = ∑𝑚
𝑗=1 𝑝1𝑗

𝑥2 𝑝21 𝑝22 ⋯ 𝑝2𝑚 𝑝𝑋
2 = ∑𝑚

𝑗=1 𝑝2𝑗
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑛 𝑝𝑛1 𝑝𝑛2 ⋯ 𝑝𝑛𝑚 𝑝𝑋

𝑛 = ∑𝑚
𝑗=1 𝑝𝑛𝑗

Joint PMF: 𝑝𝑖𝑗 = 𝑃(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑗).
Marginal PMF: 𝑝𝑋

𝑖 = 𝑃(𝑋 = 𝑥𝑖) = ∑𝑚
𝑗=1 𝑝𝑖𝑗.

• Conditional Distribution: If 𝑃(𝑋 = 𝑥1) ≠ 0,

𝑝𝑌 |𝑋=𝑥1
𝑗 = 𝑃(𝑌 = 𝑦𝑗|𝑋 = 𝑥1) = 𝑃(𝑌 = 𝑦𝑗, 𝑋 = 𝑥1)

𝑃 (𝑋 = 𝑥1) = 𝑝1,𝑗
𝑝𝑋

1

Joint distribution (continuous)
• Joint PDF: 𝑓𝑋,𝑌 (𝑥, 𝑦) and ∫∞

−∞ ∫∞
−∞ 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 1.

4



• Marginal PDF: 𝑓𝑋(𝑥) = ∫∞
−∞ 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑦.

• Conditional PDF: 𝑓𝑌 |𝑋=𝑥(𝑦|𝑥) = 𝑓𝑋,𝑌 (𝑥, 𝑦)/𝑓𝑋(𝑥).

Independence
• Two (discrete) random variables are independent if for all 𝑥, 𝑦:

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) = 𝑃(𝑋 = 𝑥)𝑃(𝑌 = 𝑦).

• If independent:
𝑃(𝑌 = 𝑦|𝑋 = 𝑥) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑃(𝑋 = 𝑥) = 𝑃(𝑌 = 𝑦).

• Two continuous random variables are independent if for all 𝑥, 𝑦:

𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌 (𝑦).

• If independent, 𝑓𝑌 |𝑋(𝑦|𝑥) = 𝑓𝑌 (𝑦) for all 𝑥.

Expected value
• Let 𝑔 be some function:

𝐸𝑔(𝑋) = ∑
𝑖

𝑔(𝑥𝑖)𝑝𝑖 (discrete).

𝐸𝑔(𝑋) = ∫ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥 (continuous).

Expectation is a transformation of a distribution (PMF or PDF) and is a constant!

• Mean (center of a distribution):

𝐸𝑋 = ∑
𝑖

𝑥𝑖𝑝𝑖 or 𝐸𝑋 = ∫ 𝑥𝑓(𝑥)𝑑𝑥.

• Variance (spread of a distribution): 𝑉 𝑎𝑟(𝑋) = 𝐸(𝑋 − 𝐸𝑋)2

𝑉 𝑎𝑟(𝑋) = ∑
𝑖

(𝑥𝑖 − 𝐸𝑋)2𝑝𝑖 or 𝑉 𝑎𝑟(𝑋) = ∫(𝑥 − 𝐸𝑋)2𝑓(𝑥)𝑑𝑥.

• Standard deviation: √𝑉 𝑎𝑟(𝑋).

Example: Bernoulli distribution (continued)
• Recall: 𝑋 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) takes values {0, 1} with 𝑃(𝑋 = 1) = 𝑝 and 𝑃(𝑋 = 0) = 1 − 𝑝.

• Mean:
𝐸(𝑋) = 0 ⋅ (1 − 𝑝) + 1 ⋅ 𝑝 = 𝑝.

• Variance:
𝐸(𝑋2) = 02 ⋅ (1 − 𝑝) + 12 ⋅ 𝑝 = 𝑝.

𝑉 𝑎𝑟(𝑋) = 𝐸(𝑋2) − (𝐸𝑋)2 = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝).
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Example: Uniform distribution (continued)
• Recall: 𝑋 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) has PDF 𝑓(𝑥) = 1 for 𝑥 ∈ [0, 1].
• Mean:

𝐸(𝑋) = ∫
1

0
𝑥 ⋅ 1 𝑑𝑥 = 𝑥2

2 ∣
1

0
= 1

2.

• Variance:

𝐸(𝑋2) = ∫
1

0
𝑥2 ⋅ 1 𝑑𝑥 = 𝑥3

3 ∣
1

0
= 1

3.

𝑉 𝑎𝑟(𝑋) = 𝐸(𝑋2) − (𝐸𝑋)2 = 1
3 − (1

2)
2

= 1
3 − 1

4 = 1
12 .

Properties
• If 𝑐 is a constant, 𝐸𝑐 = 𝑐, and

𝑉 𝑎𝑟(𝑐) = 𝐸(𝑐 − 𝐸𝑐)2 = (𝑐 − 𝑐)2 = 0.

• Linearity:
𝐸(𝑎 + 𝑏𝑋) = ∑

𝑖
(𝑎 + 𝑏𝑥𝑖)𝑝𝑖 = 𝑎 ∑

𝑖
𝑝𝑖 + 𝑏 ∑

𝑖
𝑥𝑖𝑝𝑖 = 𝑎 + 𝑏𝐸𝑋.

• Re-centering: a random variable 𝑋 − 𝐸𝑋 has mean zero:

𝐸(𝑋 − 𝐸𝑋) = 𝐸𝑋 − 𝐸(𝐸𝑋) = 𝐸𝑋 − 𝐸𝑋 = 0.

Properties (continued)
• Variance formula: 𝑉 𝑎𝑟(𝑋) = 𝐸𝑋2 − (𝐸𝑋)2

𝑉 𝑎𝑟(𝑋) = 𝐸(𝑋 − 𝐸𝑋)2

= 𝐸[(𝑋 − 𝐸𝑋)(𝑋 − 𝐸𝑋)]
= 𝐸[(𝑋 − 𝐸𝑋)𝑋 − (𝑋 − 𝐸𝑋) ⋅ 𝐸𝑋]
= 𝐸[(𝑋 − 𝐸𝑋)𝑋] − 𝐸[(𝑋 − 𝐸𝑋) ⋅ 𝐸𝑋]
= 𝐸[𝑋2 − 𝑋 ⋅ 𝐸𝑋] − 𝐸𝑋 ⋅ 𝐸(𝑋 − 𝐸𝑋)
= 𝐸𝑋2 − 𝐸𝑋 ⋅ 𝐸𝑋 − 𝐸𝑋 ⋅ 0
= 𝐸𝑋2 − (𝐸𝑋)2

• If 𝐸𝑋 = 0 then 𝑉 𝑎𝑟(𝑋) = 𝐸𝑋2.

Properties (continued)
• 𝑉 𝑎𝑟(𝑎 + 𝑏𝑋) = 𝑏2𝑉 𝑎𝑟(𝑋)

𝑉 𝑎𝑟(𝑎 + 𝑏𝑋) = 𝐸[(𝑎 + 𝑏𝑋) − 𝐸(𝑎 + 𝑏𝑋)]2
= 𝐸[𝑎 + 𝑏𝑋 − 𝑎 − 𝑏𝐸𝑋]2
= 𝐸[𝑏𝑋 − 𝑏𝐸𝑋]2 = 𝐸[𝑏2(𝑋 − 𝐸𝑋)2]
= 𝑏2𝐸(𝑋 − 𝐸𝑋)2

= 𝑏2𝑉 𝑎𝑟(𝑋).

• Re-scaling: Let 𝑉 𝑎𝑟(𝑋) = 𝜎2, so the standard deviation is 𝜎:

𝑉 𝑎𝑟 (𝑋
𝜎 ) = 1

𝜎2 𝑉 𝑎𝑟(𝑋) = 1.
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Covariance
• Covariance: Let 𝑋, 𝑌 be two random variables.

𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐸[(𝑋 − 𝐸𝑋)(𝑌 − 𝐸𝑌 )].

𝐶𝑜𝑣(𝑋, 𝑌 ) = ∑
𝑖

∑
𝑗

(𝑥𝑖 − 𝐸𝑋)(𝑦𝑗 − 𝐸𝑌 ) ⋅ 𝑃 (𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑗).

𝐶𝑜𝑣(𝑋, 𝑌 ) = ∫ ∫(𝑥 − 𝐸𝑋)(𝑦 − 𝐸𝑌 )𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦.

• 𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐸(𝑋𝑌 ) − 𝐸(𝑋)𝐸(𝑌 ).

𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐸[(𝑋 − 𝐸𝑋)(𝑌 − 𝐸𝑌 )] = 𝐸(𝑋𝑌 ) − 𝐸𝑋 ⋅ 𝐸𝑌 .

Properties of covariance
• 𝐶𝑜𝑣(𝑋, 𝑐) = 0.

• 𝐶𝑜𝑣(𝑋, 𝑋) = 𝑉 𝑎𝑟(𝑋).
• 𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐶𝑜𝑣(𝑌 , 𝑋).
• 𝐶𝑜𝑣(𝑋, 𝑌 + 𝑍) = 𝐶𝑜𝑣(𝑋, 𝑌 ) + 𝐶𝑜𝑣(𝑋, 𝑍).
• 𝐶𝑜𝑣(𝑎1 + 𝑏1𝑋, 𝑎2 + 𝑏2𝑌 ) = 𝑏1𝑏2𝐶𝑜𝑣(𝑋, 𝑌 ).
• If 𝑋 and 𝑌 are independent then 𝐶𝑜𝑣(𝑋, 𝑌 ) = 0.

• 𝑉 𝑎𝑟(𝑋 ± 𝑌 ) = 𝑉 𝑎𝑟(𝑋) + 𝑉 𝑎𝑟(𝑌 ) ± 2𝐶𝑜𝑣(𝑋, 𝑌 ).

Correlation
• Correlation coefficient:

𝐶𝑜𝑟𝑟(𝑋, 𝑌 ) = 𝐶𝑜𝑣(𝑋, 𝑌 )
√𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(𝑌 )

.

• Cauchy-Schwartz inequality: |𝐶𝑜𝑣(𝑋, 𝑌 )| ≤ √𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(𝑌 ) and therefore

−1 ≤ 𝐶𝑜𝑟𝑟(𝑋, 𝑌 ) ≤ 1.

• 𝐶𝑜𝑟𝑟(𝑋, 𝑌 ) = ±1 ⇔ 𝑌 = 𝑎 + 𝑏𝑋.

Conditional expectation
• Suppose you know that 𝑋 = 𝑥. You can update your expectation of 𝑌 by conditional expectation:

𝐸(𝑌 |𝑋 = 𝑥) = ∑
𝑖

𝑦𝑖𝑃(𝑌 = 𝑦𝑖|𝑋 = 𝑥) (discrete)

𝐸(𝑌 |𝑋 = 𝑥) = ∫ 𝑦𝑓𝑌 |𝑋(𝑦|𝑥)𝑑𝑦 (continuous).

• 𝐸(𝑌 |𝑋 = 𝑥) is a constant.

• 𝐸(𝑌 |𝑋) is a function of 𝑋 and is a random variable and a function of 𝑋 (Uncertainty about 𝑋 has not been
realized yet):

𝐸(𝑌 |𝑋) = ∑
𝑖

𝑦𝑖𝑃(𝑌 = 𝑦𝑖|𝑋) = 𝑔(𝑋)

𝐸(𝑌 |𝑋) = ∫ 𝑦𝑓𝑌 |𝑋(𝑦|𝑋)𝑑𝑦 = 𝑔(𝑋),

for some function 𝑔 that depends on PMF (PDF).

7



Properties of conditional expectation
• Conditional expectations satisfies all properties of unconditional expectation.

• Once you condition on 𝑋, you can treat any function of 𝑋 as a constant:

𝐸(ℎ1(𝑋) + ℎ2(𝑋)𝑌 |𝑋) = ℎ1(𝑋) + ℎ2(𝑋)𝐸(𝑌 |𝑋),

for any functions ℎ1 and ℎ2.

• Law of Iterated Expectation (LIE):

𝐸[𝐸(𝑌 |𝑋)] = 𝐸(𝑌 ),

𝐸(𝐸(𝑌 |𝑋, 𝑍)|𝑋) = 𝐸(𝑌 |𝑋).

• Conditional variance:
𝑉 𝑎𝑟(𝑌 |𝑋) = 𝐸[(𝑌 − 𝐸(𝑌 |𝑋))2|𝑋].

• Mean independence:
𝐸(𝑌 |𝑋) = 𝐸(𝑌 ) = constant.

Relationship between different concepts of independence
𝑋 and 𝑌 are independent

⇓
𝐸(𝑌 |𝑋) = constant (mean independence)

⇓
𝐶𝑜𝑣(𝑋, 𝑌 ) = 0 (uncorrelatedness)

Normal distribution
• A normal rv is a continuous rv that can take on any value. The PDF of a normal rv 𝑋 is

𝑓(𝑥) = 1√
2𝜋𝜎2 exp (−(𝑥 − 𝜇)2

2𝜎2 ) , where

𝜇 = 𝐸𝑋 and 𝜎2 = 𝑉 𝑎𝑟(𝑋).
We usually write 𝑋 ∼ 𝑁(𝜇, 𝜎2).

• If 𝑋 ∼ 𝑁(𝜇, 𝜎2), then 𝑎 + 𝑏𝑋 ∼ 𝑁(𝑎 + 𝑏𝜇, 𝑏2𝜎2).

Standard Normal distribution
• Standard Normal rv has 𝜇 = 0 and 𝜎2 = 1. Its PDF is 𝜙(𝑧) = 1√

2𝜋 exp (− 𝑧2
2 ).

• Symmetric around zero (mean): if 𝑍 ∼ 𝑁(0, 1), 𝑃(𝑍 > 𝑧) = 𝑃(𝑍 < −𝑧).
• Thin tails: 𝑃(−1.96 ≤ 𝑍 ≤ 1.96) = 0.95.

• If 𝑋 ∼ 𝑁(𝜇, 𝜎2), then (𝑋 − 𝜇)/𝜎 ∼ 𝑁(0, 1).

Bivariate Normal distribution
• 𝑋 and 𝑌 have a bivariate normal distribution if their joint PDF is given by:

𝑓(𝑥, 𝑦) = 1
2𝜋√(1 − 𝜌)2𝜎2

𝑋𝜎2
𝑌

exp [− 𝑄
2(1 − 𝜌)2 ] ,

where 𝑄 = (𝑥−𝜇𝑋)2

𝜎2
𝑋

+ (𝑦−𝜇𝑌 )2

𝜎2
𝑌

− 2𝜌 (𝑥−𝜇𝑋)(𝑦−𝜇𝑌 )
𝜎𝑋𝜎𝑌

,

𝜇𝑋 = 𝐸(𝑋), 𝜇𝑌 = 𝐸(𝑌 ), 𝜎2
𝑋 = 𝑉 𝑎𝑟(𝑋), 𝜎2

𝑌 = 𝑉 𝑎𝑟(𝑌 ), and 𝜌 = 𝐶𝑜𝑟𝑟(𝑋, 𝑌 ).
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Properties of Bivariate Normal distribution
If 𝑋 and 𝑌 have a bivariate normal distribution:

• 𝑎 + 𝑏𝑋 + 𝑐𝑌 ∼ 𝑁(𝜇∗, (𝜎∗)2), where

𝜇∗ = 𝑎 + 𝑏𝜇𝑋 + 𝑐𝜇𝑌 , (𝜎∗)2 = 𝑏2𝜎2
𝑋 + 𝑐2𝜎2

𝑌 + 2𝑏𝑐𝜌𝜎𝑋𝜎𝑌 .

• 𝐶𝑜𝑣(𝑋, 𝑌 ) = 0 ⟹ 𝑋 and 𝑌 are independent.

• 𝐸(𝑌 |𝑋) = 𝜇𝑌 + 𝐶𝑜𝑣(𝑋,𝑌 )
𝜎2

𝑋
(𝑋 − 𝜇𝑋).

• Can be generalized to more than 2 variables (multivariate normal).

Appendix: The Cauchy-Schwartz Inequality
• Claim: |𝐶𝑜𝑣(𝑋, 𝑌 )| ≤ √𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(𝑌 ).
• Proof : Define

𝑈 = 𝑌 − 𝛽𝑋,
where

𝛽 = 𝐶𝑜𝑣(𝑋, 𝑌 )
𝑉 𝑎𝑟(𝑋) ,

– Note that 𝛽 is a constant!
– Also note the connection to regression and OLS in the definition of 𝛽.

• Since variances are always non-negative:

0 ≤ 𝑉 𝑎𝑟(𝑈)
= 𝑉 𝑎𝑟(𝑌 − 𝛽𝑋) (def. of 𝑈)
= 𝑉 𝑎𝑟(𝑌 ) + 𝑉 𝑎𝑟(𝛽𝑋) − 2𝐶𝑜𝑣(𝑌 , 𝛽𝑋) (prop. of var.)
= 𝑉 𝑎𝑟(𝑌 ) + 𝛽2𝑉 𝑎𝑟(𝑋) − 2𝛽𝐶𝑜𝑣(𝑋, 𝑌 ) (prop. of var., cov.)

= 𝑉 𝑎𝑟(𝑌 ) + (𝐶𝑜𝑣(𝑋, 𝑌 )
𝑉 𝑎𝑟(𝑋) )

2

⏟⏟⏟⏟⏟⏟⏟
=𝛽2

𝑉 𝑎𝑟(𝑋)

− 2 (𝐶𝑜𝑣(𝑋, 𝑌 )
𝑉 𝑎𝑟(𝑋) )

⏟⏟⏟⏟⏟⏟⏟
=𝛽

𝐶𝑜𝑣(𝑋, 𝑌 ) (def. of 𝛽)

= 𝑉 𝑎𝑟(𝑌 ) + 𝐶𝑜𝑣(𝑋, 𝑌 )2

𝑉 𝑎𝑟(𝑋) − 2𝐶𝑜𝑣(𝑋, 𝑌 )2

𝑉 𝑎𝑟(𝑋)

= 𝑉 𝑎𝑟(𝑌 ) − 𝐶𝑜𝑣(𝑋, 𝑌 )2

𝑉 𝑎𝑟(𝑋) .

• Rearranging:
𝐶𝑜𝑣(𝑋, 𝑌 )2 ≤ 𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(𝑌 )

• or
|𝐶𝑜𝑣(𝑋, 𝑌 )| ≤ √𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(𝑌 ).
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