Lecture 1: Introduction

Economics 326 — Methods of Empirical Research in Economics

Vadim Marmer, UBC

What is econometrics?

Econometrics develops statistical methods for:

- Estimating economic relationships
- **Testing** economic theories
- Forecasting important economic variables
- Evaluating government and business policy

Why statistics?

- Economic theory motivates models of relationships between variables of interest.
- Economic models are approximations, not exact descriptions of reality.
- Even good models omit important factors that affect outcomes.
- We replace a **deterministic** model with a **probabilistic** model.

Examples

- Estimation of demand and supply functions Elasticities help evaluate the effects of taxation.
- Mincer (1974), Schooling, Experience, and Earnings
 Uses individual data to estimate returns to schooling and experience.
 - Determine an "optimal" amount of schooling
 - Study education in developing countries
 - Study gender and race discrimination
 - Study the impact of immigration on labour markets
- Paarsch (1997), Journal of Econometrics Estimates optimal reserve prices for BC timber auctions.
- Chandra et al. (2008), *Pediatrics* Studies how exposure to sexual content on TV relates to teen pregnancy.

Types of data: cross-section

i Definition

A **cross-sectional** dataset contains observations on individuals (e.g., workers or firms) collected in a single time period.

Example (wages and individual characteristics):

obs	wage	education	experience	female	married
1	3.10	11	2	1	0
2	3.24	12	22	1	1
3	3.00	11	2	0	0
			•••		

- The order of observations is not important.
- It is often reasonable to assume observations are **statistically independent**.

Types of data: time series

i Definition

A time series dataset contains observations on one or more variables over time.

Example (Puerto Rico minimum wage, unemployment, and GNP):

obs	year	minimum wage	unemployment	gnp
1	1950	0.20	15.4	878.7
2	1951	0.21	16.0	925.0
3	1952	0.23	14.8	1015.9

- Data frequency can be daily/weekly/monthly/quarterly/annual; in finance, trade data can be very high frequency.
- The order of observations is important.
- Observations are often correlated (e.g., trends).

Types of data: panel

i Definition

A panel dataset combines cross-section and time series: a time series for each cross-sectional unit.

Example (two-year panel on city crime):

obs	city	year	murders	population	unempl	police
1	1	1986	5	350000	8.7	440
2	1	1990	8	359200	7.2	471
3	2	1986	2	64300	5.4	75
4	2	1990	1	65100	5.5	75

Causality

- We care about **causal** relationships, but data often only reveal **correlations** (associations).
- To claim a causal effect, **other factors** affecting the outcome must be held fixed (controlled for).
- Controlled experiments help with causality in the natural sciences.
- Experiments are often impossible in economics (cost and ethics).
- We typically work with **observational data**.

Examples (causality)

Education

$$log(Wage) = \alpha + \beta \times Years of Schooling + U$$

U includes other factors (e.g., **ability**). If ability is hard to control for, simple correlations can **overestimate** returns to education.

Police and crime

Number of Crimes =
$$\alpha + \beta \times \text{Size}$$
 of the Police Force + U

Cities with more crime often hire more police, so simple correlations can **spuriously** suggest police increase crime.